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Abstract -- This paper presents a novel approach to fault 
detection, faulty phase(s) identification, faulty section 
estimation, and fault location determination for a multi-ended 
transmission line in Egypt based on artificial neural networks. 
In order to perform this approach, the protection task is 
subdivided into different neural network modules for fault 
detection, fault classification as well as fault location. The 
suggested approach uses the Radial Basis Function Artificial 
Neural Network (RBFANN). The proposed scheme consists of 
nine RBFANNs, one for fault classification and faulty phase 
identification, four networks for faulty section estimation one 
for each fault type, and four networks for fault location within 
the faulty section, again one for each fault type. The three-phase 
voltages and currents are sampled at 1 kHz. Pre and post-fault 
data are utilized as inputs for the proposed scheme. The 
Electromagnetic Transient Program (EMTP) is used to generate 
simulation data for the typical Egyptian 500 kV transmission 
line in normal and faulty conditions to train and test the 
RBFNN. Testing results proved that the proposed RBF 
networks could provide great performance for high speed 
relaying. It is accurate, fast, and reliable.  

Keywords: Digital protection, Artificial neural networks, 
Egypt network, Radial Basis Function, Transmission line. 

  
I.  INTRODUCTION 

 OWER system protection is a vital prerequisite for the 
efficient operation and continuing development of power 

systems [1]. Transmission lines are the connecting links 
between the generation stations and the distribution systems, 
and lead to other power system networks over 
interconnections. Fast and accurate location of the faults in an 
electrical power transmission line is vital for the secure and 
economic operation of power systems. This is more so in view 
of the fact that as a result of an increase in transmission 
requirements and environmental pressures, utilities are being 
forced to maximize the transmission line capabilities of the 
existing transmission lines. This effectively means that in 
order to maintain system security and stability, there is a 
demand for minimizing damage by restoring the faulty line as 
quickly as possible. Thus, the protective system shall be 
reliable, selective and very sensitive to all types of faults. 

Recently artificial neural network (ANN) has gained a 
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good success in many power applications [2-14]. Many 
advantages are inherent in ANNs, including the excellent 
noise immunity and robustness, making their use less 
susceptible to operating conditions than conventional 
approaches. The typical Back-Propagation Neural Network 
(BPNN) has been used for transmission line protection [2-9]. 
BPNN is a nonlinear regression technique which attempts to 
minimize the global error. Its training process includes the 
forward and backward propagation, with the desired output 
used to generate error values for back propagation to 
iteratively improve the output. However, despite its wide 
applications, BP has a number of deficiencies, such as slow 
training and local minimum and is not well suited for 
transmission-line relaying, as the algorithm does not work 
satisfactorily when the case to be diagnosed falls in a region 
with no training data. The radial-basis-function (RBF) based 
neural network is well suited for such cases [10-14]. 

The RBF neural network is different from BP with 
sigmoidal activation functions utilizing basis functions in the 
hidden layer, which are locally responsive to input stimulus. 
These hidden nodes are usually implemented with a Gaussian 
kernel. Each hidden node in an RBF neural network has a 
radial symmetrical response around the center vector, and the 
output layer is a set of linear weighted combiners. However, 
performance of the RBF neural network critically depends 
upon the chosen centers, which is not suitable for sequential 
learning and may require an unnecessarily large RBF network 
to obtain a given level of accuracy and cause numerical ill-
conditioning. These shortcomings can be overcome by 
reformulating the learning problem. In this paper minimal 
RBF neural network (MRBFNN), where the learning process 
is sequential, is used. The network starts with no hidden unit 
and hidden units are added based on novelty of the data. A 
new pattern is considered novel if the input is far away from 
the existing centre, error between the desired output and 
network output is large and the rms error is also significant. If 
the data set does not satisfy the above criteria no hidden 
neuron is added. Radial basis function neural networks 
(RBFNNs) are suitable for solving pattern classification 
problems due to their simple topological structure and their 
ability to reveal how learning proceeds in an explicit manner 
[13,14].  

This paper presents a non-communication technique for 
the protection of multi terminal transmission line. It presents 
the fault classification and location algorithm using 
MRBFNN. An intelligent learning procedure is used. It 
constructs a compact RBF networks in a rational way, 
preserving the advantages of linear learning. In this strategy 
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the network starts with no hidden unit and hidden units are 
added based on the novelty of the data [11-12]. The main 
objectives of this paper are:  Firstly, realizing the powerful 
and robustness of MRBFNN for classifying different states of 
operation for transmission system including normal 
operation, single line to ground fault, double line fault, double 
line to ground fault and three lines to ground fault, secondly, 
detecting the faulty section in case of fault occurrence, 
thirdly, accurately allocating the fault within the faulty 
section. In this paper only one neural network is capable to 
achieve both, fault classification and faulty phase 
identification. Four neural networks are used for faulty 
section estimation one for each fault type, and other four 
networks are used for accurate fault location within the faulty 
section, again one for each type.  

Existing Egyptian multi-ended 500 kV transmission line is 
used as a real application to show the validity of the proposed 
algorithm. The system is simulated using Electromagnetic 
transient program EMTP and the neural networks are trained 
using the simulation measurements consisting of three-phase-
sampled voltages at CAIRO500 bus and currents at the two 
circuits, KURAIMAT – CAIRO500, and SAMALUT – 
CAIRO500 at the same bus at a sampling rate of 1 kHz.  

Finally, the designed relay is tested using simulated fault 
patterns not presented during the training process. 

II.  NEURAL NETWORKS OVERVIEW 

ANN technology is a branch of artificial intelligence 
involving fuzzy logic and genetic algorithms. The drawback 
of the popular types of the ANNs is the need for a lot of trials 
to get the optimum structure with the optimum number of 
hidden layers and neurons. In this paper the Minimum Radial 
Basis Function Neural Network is used.  

The RBF network structure model consists of three layers, 
the input layer, the hidden layer, and the output layer. The 
nodes within each layer are fully connected to the previous 
layer. The input variables are assigned to each node in the 
input layer and are passed directly to the hidden layer without 
weights. The hidden nodes (neurons) contain the radial basis 
functions. Any of the functions, namely spline, multi-
quadratic and Gaussian function, may be used as a transfer 
function for the hidden neurons. The Gaussian RBF, which is 
the most widely used, has been considered for the proposed 
fault classification and location applications. 
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Where iμ  is the center vector for the hidden unit, 
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Where H indicates the total number of hidden neurons in 
the network, qiw  is the connecting weight of the ith hidden 

unit to the qth output node and qow is the bias term for the 

corresponding qth output neuron. 
The learning process of the MRBFNN involves the 

allocation of new hidden units and the tuning of network 
parameters. The network structure starts with no hidden units 
at first and as training continues more additional hidden units 
are added to the structure depending on the novelty in the 
data. A new pattern is considered novel if the input is far 
away from the existing centre, the error between the desired 
output and network output is large and the rms error is 
significant. If the data set does not satisfy the above criteria, 
no hidden neuron is added. This particular architecture of 
RBFNN has proved to directly improve training and 
performance of the network [10-12].  

During training of the RBF network, care has been taken to 
avoid network memorization or over training. When a neural 
network memorizes the training data, it produces acceptable 
results for patterns used for training but provides incorrect 
output when tested on unseen data. To ensure that the neural 
network has learned and not memorized by reshuffling of the 
training patterns was performed to get almost equal errors 
during training and testing. It was observed that the training 
error decreases along with number of iterations, while the 
testing error decreases at first, bounces around, and then 
starts increasing. The optimal learning is achieved at the 
global minimum of testing error. 

  
Fig. 1 Single line diagram of the system under study. 



III.  SYSTEM UNDER STUDY 

The strategic part of the Egyptian unified power system is 
used as a real application to train and test the suggested 
algorithm.  The existing Upper Egypt power system shown in 
figure 1 consists of HIGH DAM–CAIRO500, HIGH DAM–
KURAIMAT and KURAIMAT–CAIRO500 transmission 
lines. It contains the largest power generation station in Egypt 
which is HIGH DAM power generation station. It contains 
also the largest steam power generation station in the Middle 
East which is KURAIMAT power generation station. 

A.  Circuit Representation 

    1)  Transmission Circuits: 
The system consists of three transmission circuits: 

          a)  HIGH DAM – CAIRO500: 
This circuit is a single circuit line of a length 789km 
beginning at HIGH DAM station and ending at CAIRO500 
station. The line passes also through NAG HAMADI, 
ASSIUT, and SAMALUT.  
          b)  HIGH DAM – KURAIMAT: 
This circuit is a single circuit line of a length 734km 
beginning at HIGH DAM station and ending at KURAIMAT 
station. The line passes through NAG HAMADI, ASSIUT, 
and SAMALUT. 
          c)  KURAIMAT – CAIRO500: 
This circuit is a single circuit line of a length 125km 
beginning at KURAIMAT station and ending at CAIRO500 
station. 
    2)  Generation stations: 
          a)  HIGH DAM: 
It includes twelve generation units each of 175 MW, ten of 
them are in operation, and twelve transformer units 15.75/500 
kV each of 206 MVA, ten of them are in operation. 
          b)  KURAIMAT: 
It includes two generation units each of 627 MW and two 
Transformer units 23/500 kV each of 812 MVA. 
    3)  Transformer stations: 
          a)  HIGH DAM:     
It contains two transformers 500/132 kV, 375MVA each. 
          b)  NAG HAMADI: 
It contains two transformers 500/220 kV, 375 MVA each and 
three transformers 500/132 kV, 285MVA each. 
          c)  ASSIUT: 
It contains two transformers 500/132 kV, 375 MVA each. 
          d)  SAMALUT:  
It contains one transformer 500/132 kV of 285 MVA. 
          e)  KURAIMAT:  
It contains one transformer 500/220kV of 285 MVA. 
          f)  CAIRO500: 
It contains three transformers 500/ 132kV, 285 MVA each.  

B.  Load Centers: 

The power system under consideration is a heavily loaded 
power system as it contains the most important industrial 
loads such as Nag Hammady Aluminum factory, Ferrosilicon, 
Kima, and cement factories. The load distribution at different 
station buses is listed in table I.  

 

TABLE I 
 LOADS AT DIFFERENT STATIONS IN THE SYSTEM UNDER STUDY 

Station Bus Load (MW and MVAR) 

HIGH DAM 364.7+J208.8 

NAG HAMMADI 799.3+j481.7 

ASSIUT 232.2+j114.4 

SAMALUT 167.9+j147.7 

KURAIMAT 173.2+j 97.9 

CAIRO 500 392.4+j650.1 

IV.  SYSTEM SIMULATION 

Due to limited available amount of practical fault data, it is 
necessary to generate examples of fault waveforms using 
simulation. To generate data for the typical transmission 
system, digital simulations were performed for different faults 
using EMTP which was used to generate three voltages and 
six current signals samples at CAIRO500 terminal of the 
system shown in figure 1. The simulation of different fault 
types (a-g, b-g, c-g, a-b, b-c, c-a, ab-g, bc-g, ca-g, and abc-g) 
and conditions (inception angles 0º, 54º, 90º, and fault 
resistances 0Ω, 100Ω) were conducted at various locations on 
the transmission lines. The sampled data represents the 
system characteristics. Therefore, the sampling rate 1 kHz, 
corresponding to 20 samples per cycle on a 50 Hz base was 
selected in this paper. This provides a well convergence 
performance. Despite the parallel processing capability of 
ANN, for further decrease in the computation time, the input 
vector dimension is decreased by reducing the number of 
samples in a data window. A four sampled data window is 
collected for each signal to converge to the required value. 

V.  DESIGN OF MINIMAL RADIAL BASIS FUNCTION NEURAL 

NETWORK 

The proposed scheme can achieve protective relaying tasks 
including fault detection and classification, faulty-section 
discrimination, as well as fault location. The algorithm starts 
by collecting the sampled data. The design of the MRBF 
algorithm is realized in two stages, the first stage being a pre-
processing stage, and the second stage being feature 
extraction using MRBFNNs. 

A.  Pre-processing 

The Pre-processing stage algorithm consists of two steps, 
namely filtering and normalization.  
    1)  Filtering 

The post-fault voltage and current signals are corrupted by 
high frequency transients, which may not be suitable for the 
learning of the proposed algorithm. The nine signals are 
filtered using a zero phase digital filter to attenuate the DC 
and high frequency transient components. 
    2)  Normalization 

The voltage and current signals were normalized. The 
normalized voltage and current values are clipped to -1 and 
+1 if they are outside the interval [-1, +1]. 

B.  Feature Extraction using MRBFNN 

The second stage contains nine networks, one for fault 
classification as well as faulty phase identification, four 



networks for faulty section estimation, and other four 
networks for accurate fault location within the faulty section.  

    1)  Fault Detection and Classification 
A single RBF network is obtained for the three purposes, 

fault detection, fault classification and faulty phase 
identification. The input layer contains 36 inputs 
corresponding to nine input variables, three voltages and six 
currents, each with 4 samples in a data-window. A hidden 
layer of 700 neurons is selected. The transfer function used 
for the hidden layer neurons is Gaussian. The output layer 
contains four neurons. The outputs contain variables whose 
values are given 0 or 1 relating to three phases (A, B, C) and 
the ground (G). This can be extended to represent all practical 
fault types for all three transmission circuits shown in figure 
1 involving the various combinations of phases at different 
operating system conditions.  

    2)  Faulty Section Estimation  
The system under study is subdivided into six sections as 

shown in figure 1. Four MRBFNN are designed each network 
capable to estimate faulty section, one for each fault type. The 
first NN for single line to ground, the second for double line 
fault, the third for double line to ground fault, and the fourth 
for three line to ground fault. The samples of the three phase 
voltages at CAIRO500 bus and currents in SAMALUT circuit 
at CAIRO500 bus are used to train and build the neural 
network knowledge base to get output dependent on the faulty 
section. The input layer contains 24 inputs corresponding to 
six input variables three voltages and three currents, each 
with four samples in a data-window. A hidden layer of 50 
neurons is selected. The output layer contains one output 
neuron corresponding to the faulty section. The transfer 
function used for the hidden layer neurons is Gaussian.  

    3)  Fault Location 
To estimate the exact fault location within the faulty 

section other four MRBF neural networks (again one for each 
fault type) are trained with the voltages and currents as in 
faulty section estimation, while the output is the fault location 
as per unit of the section length. The structure of the proposed 
fault locator is similar to that of the faulty section estimator, 
where the input layer contains the same 24 inputs. The 
hidden layer contains 50 neurons and the output layer 
contains one output neuron corresponding to the fault 
location. The transfer function used for the hidden layer 
neurons is Gaussian. 

VI.  TEST RESULTS AND DISCUSSION 

A.  Fault Classification MRBFNNs 

Different fault types at various locations of each section of 
the system under study with different inception angles and 
fault resistance (which were not used in the training stage)  
were used to test the RBFNN. During the process of 
calculation, the "one" and "zero" outputs of the NN are 
formed within a tolerance 0.002%. This means that when the 
output is near zero, it is taken as zero and when the output is 
near one, it is taken as one. The RMS error convergence 
diagram is shown in figure 2.  
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Fig. 2 RMS error convergence diagram for the fault classification RBFNN as a 
function of the number of epochs  

Table II shows some of the test results for different system 
conditions and not presented to the neural network during the 
training process. For each case it can be seen that the values 
of (A, B, C and G) converge to the required values, and are 
either very close to zero or to one. 

TABLE II   
TESTING RESULTS OF THE RBF NETWORK FOR FAULT CLASSIFICATION AND 

FAULTY PHASE IDENTIFICATION (NN1) 

RESULT OUTPUT 
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 A B C G 

n n n n -0.0000 -0.0000 0.0000 0.0000 
a-g 54 0 1 1.0207 0.0188 0.0270 1.0275 
a-g 0 100 4 0.9646 -0.0026 0.0131 0.9957 
b-g 90 100 3 -0.0103 1.0281 0.0318 0.9813 
c-g 0 0 4 0.0825 -0.0202 0.9988 1.0572 
a-b 0 0 2 0.9845 1.0141 0.0072 0.0032 
b-c 54 0 5 -0.0323 0.9793 1.0405 -0.0585 
c-a 54 0 4 0.9986 0.0118 0.9974 -0.0154 

ab-g 54 0 6 1.0554 0.8705 -0.0329 1.1097 
bc-g 54 0 2 -0.0899 1.0508 0.9319 0.9192 
ca-g 0 0 6 1.2345 -0.2098 0.9470 1.1821 
abc-g 90 100 4 1.2484 0.8527 1.0343 1.1475 

B.  Faulty Section Estimation MRBFNNs 

All types of faults with different inception angles and 
different locations of each section of the HIGHDAM-
CAIRO500 circuit of the system under study were simulated 
to get the training and the testing data for MRBFNNs. Each 
network was trained and tested with patterns at 25, 50% and 
75% of each section. During the training process, the output 
digit of the ANN is formed within a tolerance of 0.01%. The 
RMS error convergence diagram is shown in figure 3. 

Random selected testing results for different fault types 
(which were not presented to the neural networks during the 
training process) are shown in tables III, IV, V and VI. 
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Fig. 3 RMS error convergence diagram for faulty section estimation RBFNN as 
a function of the number of epochs 



TABLE III 
 TESTING RESULTS OF THE MINIMAL RBF NETWORK FOR SINGLE LINE TO 

GROUND FAULT (NN2) 

Fault 
Type 

Fault Inception 
Angle (Θº) 

Faulty 
Section 

Target Result 
Output 

a-g 54 SAM-CA 1 1.1076 
b-g 90 SAM-CA 1 0.6391 
c-g 0 SAM-CA 1 0.6201  
a-g 90 AS-SAM 2 2.2392 
b-g 54 AS-SAM 2 2.1587 
b-g 90 AS-SAM 2 2.1181 
b-g 90 NH-AS 3 3.1178 
c-g 0 NH-AS 3 3.1769 
c-g 54 NH-AS 3 2.9251 
a-g 54 HD-NH 4 4.0585 
a-g 90 HD-NH 4 4.1496 
b-g 0 HD-NH 4 4.0594 

TABLE IV 
 TESTING RESULTS OF THE MINIMAL RBF NETWORK FOR DOUBLE LINE FAULT 

(NN3) 

Fault 
Type 

Fault Inception 
Angle (Θº) 

Faulty 
Section 

Target 
Result 
Output 

a-b 0 SAM-CA 1 0.8065 
b-c 54 SAM-CA 1 1.1092 
b-c 90 SAM-CA 1 1.1942 
a-b 54 AS-SAM 2 2.1088 
b-c 0 AS-SAM 2 2.1114 
c-a 0 AS-SAM 2 2.0339 
b-c 54 NH-AS 3 2.8823 
b-c 90 NH-AS 3 3.2342 
c-a 0 NH-AS 3 3.0147 
a-b 54 HD-NH 4 4.0103 
b-c 54 HD-NH 4 4.1363 
c-a 0 HD-NH 4 4.0124 

TABLE V 
 TESTING RESULTS OF THE MINIMAL RBF NETWORK FOR DOUBLE LINE TO 

GROUND FAULT (NN4) 

Fault 
Type 

Fault Inception 
Angle (Θº) 

Faulty 
Section 

Target Result 
Output 

ab-g 0 SAM-CA 1 0.9999 
ab-g 54 SAM-CA 1 1.0191 
ca-g 90 SAM-CA 1 1.0606 
ab-g 0 AS-SAM 2 2.0172 
bc-g 90 AS-SAM 2 2.1242 
ca-g 54 AS-SAM 2 2.1638 
bc-g 54 NH-AS 3 3.0617 
bc-g 90 NH-AS 3 3.0999 
ca-g 0 NH-AS 3 3.1411 
ab-g 0 HD-NH 4 4.2089 
bc-g 54 HD-NH 4 4.0722 
ca-g 0 HD-NH 4 4.0674 

TABLE VI 
 TESTING RESULTS OF THE MINIMAL RBF NETWORK FOR THREE LINE TO GROUND 

FAULT (NN5) 

Fault 
Type 

Fault 
Inception 

Angle (Θº) 

Faulty 
Section 

Target Result 
Output 

abc-g 54 SAM-CA 1 1.0581 
abc-g 54 AS-SAM 2 2.3874 
abc-g 90 NH-AS 3 3.1757 
abc-g 0 HD-NH 4 4.2566 

C.  Accurate Fault Location MRBFNNs 

All types of faults with different inception angles and 
different locations at (0, 10, 20, 30… 100%) of SAMALUT-
CAIRO500 section from the circuit under study were 
simulated to get the training and testing patterns for the 
MRBFNNs. During the testing process, the output digit of the 
ANN is formed within a tolerance 0.003%. The RMS error 
convergence diagram is shown in figure 4.  
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Fig. 4 RMS error convergence diagram for fault location RBFNN as a function 
of the number of epochs 

Selective testing results for different fault types (which 
were not presented to the neural networks during the training 
process) are shown in tables VII, VIII, IX and X.  
The error is calculated by: 

100*
lengthsection faulty  Total

 locationfault  Calculated location  fault  Actual
Error %

−
=    (3) 

TABLE VII 
 TESTING RESULTS OF THE MINMAL RBF NETWORK FOR SINGLE LINE TO GROUND 

FAULT (NN6) 

Fault 
type 

Fault Inception 
Angle (θº) 

Actual Fault 
Location 

Estimated 
Fault Location 

 %Error 

a-g 0 0.30 0.3009 0.09 
a-g 54 0.30 0.3065 0.65 
a-g 0 0.50 0.4983  0.17 
a-g 0 0.70 0.7017 0.17 
b-g 54 0.30 0.2868 1.32 
b-g 54 0.50 0.5103 1.03 
b-g 90 0.90 0.8894 1.06 
c-g 54 0.10 0.1004 0.04 
c-g 54 0.30 0.2986 0.14 
c-g 54 0.50 0.4967 0.33 
c-g 90 0.50 0.5058 0.58 

TABLE VIII 
 TESTING RESULTS OF THE MINMAL RBF NETWORK FOR DOUBLE LINE TO 

GROUND FAULT (NN7) 

Fault 
type 

Fault inception 
angle(θº) 

Actual Fault 
location 

Estimated 
Fault Location 

% Error 

a-b 0 0.10 0.1060 0.6 
a-b 0 0.50 0.5149 1.49 
a-b 54 0.50 0.5010  0.1 
a-b 54 0.70 0.6854 1.46 
b-c 90 0.30 0.3046 0.46 
b-c 90 0.50 0.5028 0.28 
b-c 54 0.70 0.7130 1.3 
b-c 90 0.70 0.6967 0.33 
b-c 0 0.90 0.9110 1.1 
c-a 54 0.50 0.5109 1.09 

 



TABLE IX 
 TESTING RESULTS OF THE MINMAL RBF NETWORK FOR DOUBLE LINE TO 

GROUND FAULT (NN8) 

Fault 
type 

Fault inception 
angle(θº) 

Actual Fault 
location 

Estimated 
Fault Location 

% Error 

ab-g 54 0.10 0.1176 1.76 
ab-g 0 0.50 0.5153 1.53 
ab-g 90 0.50 0.4952  0.48 
ab-g 90 0.70 0.7094 0.94 
bc-g 54 0.30 0.3025 0.25 
bc-g 90 0.30 0.2994 0.06 
bc-g 54 0.50 0.5013 0.13 
bc-g 90 0.50 0.5081 0.81 
bc-g 90 0.70 0.7078 0.78 
ca-g 54 0.30 0.3212 2.12 

TABLE X 
 TESTING RESULTS OF THE MINIMAL RBF NETWORK FOR THREE LINE TO GROUND 

FAULT (NN9) 
Fault 
Type 

Fault Inception 
Angle (Θº) 

Actual Fault 
location 

Estimated 
Fault Location 

% Error 

abc-g 54 0.30 0.3250 2.5 
abc-g 90 0.90 0.9160 1.6 
abc-g 0 0.50 0.5132 1.32 
abc-g 90 0.70 0.6729 2.71 

VII.  CONCLUSIONS 

In this paper, a novel integrated protective scheme for 
EHV multi-ended transmission system is introduced. A new 
structure of neural network diagnostic system for fault 
classification, faulty phase identification, faulty section 
estimation, and reasonably accurate fault location is proposed. 
The technique is based on the use of the Radial Basis 
Function Artificial Neural Network. The proposed scheme 
deals with all types of faults and all fault conditions, 
including different fault types, fault inception angles, fault 
resistance, and fault location. As a case study, the Upper 
Egypt 500kV transmission system was established by 
collecting elemental samples of voltage and current 
waveforms using EMTP. The diagnosis system consists of two 
hierarchical levels. The first is for pre-processing and the 
second for neural networks. These networks are responsible 
for fault classification as well as faulty phase identification, 
faulty section estimation and fault location within the faulty 
section. The new structure of the RBFANN can be easily 
adapted to deal with the changes of relaying scheme through 
the user interface. Accuracy in testing results was reasonable, 
irrespective of different system conditions. Therefore, it 
validates the proposed Diagnosis system for cases contained 
in the training set as well as for new testing cases.   
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