
Network Partitioning for Real-time Power
System Simulation

P. Zhang, Student member, IEEE, J. R. Martí, Fellow, IEEE, H. W. Dommel, Fellow, IEEE

 Abstract-- This paper analyzes the computational complexity
of power system elements and the interlink communication costs
for the OVNI real-time simulator. Data dependencies in the
system simulation are modelled as a weighted graph. A multilevel
graph partitioning method is then used to divide the computation
among the PC cluster processors. For a given power system
network, the partitioning program can generate an optimal
partitioning strategy in the context of the OVNI simulator.
Partitioning results for the IEEE 118-bus test system are
discussed in this paper. The partitioning strategy with an optimal
number of partitions guarantees minimum overall computational
load and achieves the fastest simulation speed.

Keywords: graph partitioning, processor load balancing,
OVNI, real-time simulation

I. INTRODUCTION
BC’s Object Virtual Network Integrator (OVNI) real
time simulator [1] is based on the MATE (Multi-Area

Thevenin Equivalent) concept [2]. As a general circuit
simulation algorithm, MATE extends the concepts of
Multinode Thevenin Equivalents [3], Diakoptics and MNA.
Applying the MATE concept to the EMTP formulas, the
algorithm for the real time power system simulator can be
briefly formulated as follows.

Assume an electrical network consists of subsystems [A1],
[A2],… [An], which are connected by a vector of link branches
α. Then the MATE equation set for the system is

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

− 0
00

00
00

nn A

A

A

α

A

A

A

t
n

tt
nn h

h
h

i
v

v
v

zppp
pA

pA
pA

MM

L

L

MMOMM

L

L

2

1

2

1

21

22

11

 (1)

where
Ai = admittance matrix of subsystem [Ai] (i=1,2,…,n)

 P. Zhang is with the Department of Electrical and Computer Engineering,
University of British Columbia, Vancouver, B.C. V6T 1Z4 CA (e-mail:
pzhang@ece.ubc.ca).
J. R. Martí is with the Department of Electrical and Computer Engineering,
University of British Columbia, Vancouver, B.C. V6T 1Z4 CA (e-mail:
jrms@ece.ubc.ca).
H. W. Dommel is with the Department of Electrical and Computer
Engineering, University of British Columbia, Vancouver, B.C. V6T 1Z4 CA
(e-mail: hermannd@ece.ubc.ca).
Presented at the International Conference on Power Systems
Transients (IPST’05) in Montreal, Canada on June 19-23, 2005
Paper No. IPST05 - 177

pi = link current injection matrix of subsystem [Ai]
hAi = history terms of subsystem [Ai]
VAi = nodal voltages of subsystem [Ai]
iα = current vector in link branches α
z = impedance matrix of branches α

Equation set (1) is then rewritten as

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

αα e
e

e
e

i
v

v
v

z
q

q
q

nn A

A

A

α

A

A

A

n

MM

L

L

MMOMM

L

L

2

1

2

1

2

1

000
100

010
001

 (2)

where

i
-
ii pAq 1=

ii A
-
iA hAe 1=

zqpz += ∑
i

i
t
iα

∑=
i

A
t
i i
epeα

As shown in (2), the MATE algorithm perfectly matches
the concept of a cluster computing system, which consists of a
collection of interconnected stand-alone PCs working together
as an integrated real time computing resource. For instance,
the master unit in a PC cluster can be in charge of receiving
the updated history terms from the slave units, solving the link
equations and distributing the links solution to the slave
nodes. Each subsystem solver (slave units) calculates its part
of the network solution, updates its history terms and sends
them back to the mater unit.

Obviously, in order to efficiently explore real-time power
system simulation capability of a PC cluster, it is an essential
step to appropriately partition the power system so as to map
the computational load onto the processors. In the context of
the MATE solution algorithm of UBC’s OVNI real-time
simulator, a good partition scheme should distribute to each
processor a roughly equal number of computations while, at
the same time, minimizing the number of link computations
and the amount of inter-processor communication time
between slave and master nodes.

Graph models can be used to relate data dependencies in
the power system simulation. Graph partitioning can then be
used to divide the computation among the PC cluster
processors.

As a technique for balancing the load and minimizing

U

communication among processors when executing a set of
tasks in parallel, graph partitioning is a NP-complete problem
[4]. Due to this fact, almost all practical approaches to this
problem are heuristics-based. The existing methods can be
classified into categories, such as geometric [4], combinatorial
and mathematical programming [5, 6], spectral techniques [7,
8], and multilevel methods [9-11]. Among these, the
multilevel methods, which can perform high quality
partitioning, are the fastest methods so far. In this paper a
multilevel recursive bisection approach is chosen as our
solution method. Therefore, the emphasis in this paper lies not
on the graph partitioning method itself but on the
computational complexity and communication cost analysis of
our real time simulator.

II. ELEMENT COMPUTATIONS
This section analyzes the computational complexity of

power system elements and MATE for the real time
simulation. We assume that the MATE algorithm is based on
the trapezoidal rule.

In this paper, the computational complexity for updating
the history terms in the OVNI simulator is quantified by the
concept of a flop. As defined in [12], a flop constitutes the
effort of doing a floating point add, a floating point multiply
and a little subscripting. The following describes the way to
calculate the number of flops for an element to update its
history terms.

A. M Phase Nominal П-Circuit
(1) Series connection of coupled R and L
Suppose R and L are symmetrical. Fig. 1 illustrates a 3-

phase nominal П-circuit, where

R =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

333231

232221

131211

RRR
RRR
RRR

, L=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

333231

232221

131211

LLL
LLL
LLL

.

 L11R11

L22R22

L33R33

j1

j2

j3

k1

k2

k3

 R12

 R23 L23

R13 L12

L23

Fig. 1 Three-phase Nominal П-Circuit

By using the Trapezoidal rule, the discrete time equation of
the m-phase R-L circuit is [3]

ijk(t) = GRL[uj(t) − uk(t)] − hRL(t) (3)
where the history term is

hRL(t) = − (I − GRLR) hRL(t − ∆t)
 − 2(GRL − GRLRGRL)[uj(t− ∆t) − uk(t− ∆t)] (4)

and the equivalent resistance is

GRL = 1
1

1

22
−

−
−

⎥⎦
⎤

⎢⎣
⎡ ∆

+
∆ LRLI tt (5)

According to (4), the number of flops for updating the
history terms of the R-L circuit is 2(m2+m). If m = 3, then the
number of flops is 24.

(2) Coupled Capacitances

By using the Trapezoidal rule, the discrete time equation of
an m-phase C branch is

ij(t) = GCuj(t) − hC(t) (6)
where the history term is

hC(t) = hC(t − ∆t) + 2GC uj(t− ∆t) (7)
and the equivalent resistance is

GC = C
t∆

2 (8)

Then the number of flops for updating history terms of the
C circuit is (m2+m). If m = 3, the number of flops is 12.

For an m-phase П-circuit consists of R, L and C matrices,
the total number of flops is 3(m2+m).

B. Transformers
 If we neglect the core saturation effects, transformers can
be represented in the form of the branch resistance and
inductance matrix in Fig.1 [3].
 Therefore, for a three phase three winding transformer, the
number of flops for updating the history terms is 2(9m2+3m)
= 180 with m=3. There are the same number of flops for a
three phase autotransformer.
 If the element is a three-phase two-winding transformer,
then the number of flops is 2(4m2+2m) = 84.

Here the formulas of the discrete time circuit equivalent are
omitted due to space limits.

C. Synchronous Machine
The equivalent equations of the electrical part of the phase-

coordinates three-phase synchronous machine model used in
OVNI [13] are given below

vs(t) = − Req(t) is(t) + es(t) (9)
where

Req(t) =
t∆

2 { R1(t) − R2(t) [R4(t)]−1 R3(t) } (10)

es(t) = R2(t)[R4(t)]−1[vr(t) − erh(t)] + esh(t) (11)
The R1(t)~ R4(t) are 3×3 matrices. The physical meaning of

these matrices can be found in [13]. These matrices can be
calculated from the linear interpolation of a series of pre-
calculated lookup tables, which requires 4m2 flops of
calculation.

An efficient method to calculate a matrix inverse is the
Gaussian elimination in Chapter 4 of [12]. The number of
flops needed of this method is [(m−1) m2 − (m−1) 2 m + m2 +
(m−1) 3 /3], where m=3 is the dimension. Taking into account
the effort to calculate the erh(t), esh(t) and the matrix/vector
products/adds, the number of flops for updating the history
terms is [(m−1) m2 − (m−1) 2 m + (m−1) 3 /3 + m2] + 4m2

 +
m3 + 2(m+1) m + m + m2

 + m.
Different from the non-rotating element, the Req(t) changes

at each time step. The number of flops for updating the
equivalent resistances is [(m−1) m2 − (m−1) 2 m + (m−1) 3 /3 +
m2] + 2m3

 + m2. Thus the total number of flops for electrical
part is the sum of these two numbers.

The equivalent equations for the mechanical part are
ωm(t) = A–1 (t)C(t) (12)

with

A = Jm +
t∆

2 Dm(t) +
22
⎟
⎠
⎞

⎜
⎝
⎛
∆t

Km(t) (13)

B(t) =
2
t∆ T(t) −[Jm −

t∆
2 Dm(t) −

22
⎟
⎠
⎞

⎜
⎝
⎛
∆t

Km(t)] (14)

C(t) = B(t)ωm(t−∆t)+∆tKm(t)θm(t−∆t)+
2
t∆ T(t−∆t) (15)

 The total number of flops for the mechanical part is [(m−1)
m2 − (m−1) 2 m + (m−1) 3 /3 + m2] + 6m.
 For any other power system elements, for instance the
induction machine, the number of flops for updating the
history terms can be estimated in the same way above by
examining the discrete time equivalent circuit of the element
[14].

III. NETWORK PARTITIONING METHOD
As is discussed before, the goals of network partitioning

during real time power system simulation with the OVNI
simulator are as follows: 1) The computational load among
processors should be balanced and, if necessary, the memory
requirement of each PC should also be balanced; 2) The
communication cost of different processors should also be
roughly equal; 3) The number of links should be minimized.

It has been found in [1] that the inherent needed
communication time of a solver node is determined by the
number of link branches between this node and its
neighboring solver nodes. The communication time will be
minimum if the number of links is minimized. Hence items 2)
and 3) above become one. From a mathematical programming
point of view, the third item can be considered as the objective
and the first item can be considered as the constraint.

It can be clearly seen that our network-partitioning problem
for the OVNI simulator can be exactly modeled as a graph-
partitioning problem as below.

1) We can consider a power system element (such as a
transmission line, generator, transformer, load, etc.) as a
weighted vertex v in a graph. Each vertex (element) v has a
weight vector wv of size 2. Conceptually, the w1

v can be used
to represent the number of computations for updating the
history terms at each time step; w2

v can be set to 1 for each
vertex. Let us explain the second weight in detail.

As it is known, the main computational load of a subsystem
solver (slave units) can be split into two parts. One part is the
computational load for updating the history terms, which
corresponds to w1

v. The other part is solving the subsystem
nodal equations. We will not calculate the number of flops of
this part of the computational load explicitly. Instead, we will
do it implicitly by setting w2

v =1 for each vertex. If the second
weight is perfectly balanced in the network partitioning, then
it means that the dimension of each subsystem nodal equations
is well balanced. Therefore, the computational load for
solving the subsystem nodal equations will also be balanced

among the slave processors.
2) The physical links between elements can be modeled as

an edge. Conceptually, the weight of the each edge can be set
to p, where p is the number of phases of the link branch. Thus,
the objective of the graph partitioning becomes to minimize
the total number of links of the real time simulator.

Figure 2 illustrates the transformation of the IEEE 30-bus
system into a weighted graph.

The graph partitioning problem is then defined [11] as
follows.

Consider a graph G (V, E) with |V| = n, where V is a set of
weighted vertices such that each vertex Vv∈ has a weight
vector wv=(w1

v, w2
v) and E is a set of scalar-weighted edges.

Suppose the weight vectors of the vertices are normalized
such that 0.1=∑

v

v
i

w for i =1, 2. Given a positive integer k,

find k subsets (partitions) V1, V2, …, Vk of V satisfying
VVi

k
i ==1U and Vi ∩Vj =Φ for i ≠ j , such that

1) The edge-cut, i.e. the sum of the edge-weights whose
incident vertices belong to different subsets, is minimized
subject to the constraint
2) ii cli ≤∀ ,
where li is the load imbalance factor with respect to the ith
weight

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

∈∀ j

i
Vv

v

ji wkl max (16)

ci
 (≥1.0) can be set close to 1.0 to guarantee a perfect load

balancing.

Fig. 2 IEEE 30-bus System and Its Graph Description

This multi-constraint graph partitioning problem can be
solved by a multilevel recursive bisection method [11]. After
recursively calling the bipartitioning functions for about log2k
times, the original graph G0 is divided into k parts. The
recursive bisection tree for a 16-way partitioning is shown in
Fig.3, where the nodes except for the leaves represent the
bipartitioning of a graph (subgraph). Each node processing
includes three stages: graph coarsening, initial partitioning and
refinement.

1

2524
15

23 26

2122
18

19

20

14

13 10171612

11

9
27

29

30

28

8

64

75

3

2
1

2524
15

23
26

2122
18

19

20
14

13 10171612

11

9
27

29

30

28

8

64

75

3

2
31

44 35

32

33

34

36

38

39

43

40

41 42

45 47

96

46

48

49
50 51 52 53

54
55

56

57 58 59
68

61
62

63

100
64

65
66 67

60

69

72

70

71

73 74

75

76

77

78

79

80
81 82

83

84

85

86

87 89

88 90
91

92

93

94

95

97

99

98

37

Fig. 3 Recursive Bisection Tree

A. Graph Coarsening
First normalize the vertex weights for the graph to

partition.
Graph coarsening of an original graph G0 means

transforming G0 into a coarser graph G1, by collapsing
together selected vertices of G0. Taking the coarser graph as
the original graph and iteratively call the coarsening routine, a
series of graphs G2, G3,…,Gc-1, are constructed until a
sufficiently small graph Gc is obtained. An efficient method
suitable for multi-constraint partitioning is the combination of
the heavy edge matching (HEM) and balancing edge heuristic
[10].

B. Initial Bipartitioning
Let Gc = (V, E) is the coarsest graph to be partitioned into

two balanced subgraphs GA= (VA, EA) and GB= (VB, EB). The
bipartition algorithm proceeds as follows.

1) Select a vertex Vv∈ randomly, set VA= {v}, VB= V \VA.
Create two FIFO priority queues;

2) All vertices BVu∈ are inserted into the two queues
according to the following rule: u belongs to the jth queue if

wj
u = u

ii
wmax (i, j ∈{1, 2});

3) If BB V
ii

V
j ww max= , then the jth queue is selected. If the

jth queue is empty, choose the nonempty queue corresponding
to the second heaviest weight (in this 2-constraint case, simply
choose another queue). Move the top vertex in the jth queue to
GA;

4) Repeat 3) until one of the weights of GA, say the ith

weights, satisfies ∑∑
∈∈

≥
Vu

u
i

Vu

u
i ww

A
2
1

.

C. Uncoarsening and Refinement
The concept of the gain of a vertex Vv∈ is first

introduced. The gain gv is the reduction on the edge-cut if v is
moved from one partition Vi to another

 ∑∑
∈∧∈∉∧∈

−=
ii VuEvu

vu

VuEvu

vuv wwg
),(

),(

),(

),((17)

Also define the boundary of a partition Vi as
 { }ii

V VuEvuVvvB i ∉∧∈∧∈=),(| (18)
At this stage, the coarser graph Gc is projected back to the

original graph G0 by going through the intermediate graphs
Gc-1, Gc-2,…, G1. During each projecting step, two refinement
algorithms are called. Here assume the intermediate graph to
be refined is Gf (Vf, Ef).

a. Weight Balancing Algorithm

1) Create 2 FIFO queues for each of the 2 partitions. All
the vertices in a partition are inserted into the 2 queues for this
partition according to the same rule as step 2) in stage B.

2) If },{},2,1{ ,max BAjiww jl V
ii

V
k ∈∈= , then the kth

queue for partition Vl is selected. Pick a vertex from this queue
and move it to another partition, such that the two partitions
are best balanced. If the selected queue is empty, then select
the nonempty queue corresponding to the second largest
weight in the same partition. The moved vertex is then locked.

3) Iterate step 2) for |Vf| times.

b. Edge-cut Reduction Algorithm

1) Create 2 FIFO queues for each partition. Only the

vertices in jVB (},{ BAj∈) are inserted into the queues for
this partition, according to the same rule as step 2) in stage B.

2) If },{},2,1{ ,max BAjiww jl V
ii

V
k ∈∈= , then the kth

queue for partition Vl is selected. Pick a vertex with the largest
gain from this queue and move it to another partition. If the
selected queue is empty, then select the nonempty queue
corresponding to the second largest weight in the same
partition. The moved vertex is then locked and the gains of
other boundary vertices are updated.

3) Repeat step 2) for N times, say, N =10.

IV. NETWORK PARTITIONING OF THE TEST SYSTEM
Based on the computational load analysis of OVNI, the

IEEE 118-bus test systems was investigated by using the
multilevel network partitioning program.

The load imbalance factor li with respect to the ith weights
and the edge-cuts are employed to evaluate the partitioning
results,

∑

∑

∈

∈∀
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

==

Vv

v

Vv

v

j

iav

i
i kw

w

l
l

l
i

j

i

/

max

,

max, (19)

A graph G can have at most |V| partitions. However, if the
number of partitions increases, the computational load to solve
the link equations in MATE may also increase. The
disadvantage due to the increase of link branches may
overwhelm the advantage due to the reduction of computation
loads on slave processors. The partitioning program is
designed to find the optimal number of partitions under these
constraints. Assume the computational load on slave processor
i is lslave, i and the load for solving the link equations is llink.
Then the total computational load ltotal can be estimated as

ltotal = llink + islavei
l ,max (20)

Perform repeated runs of partitioning and scan the number
of partitions, then the optimal number of partitions will be
found. The partitioning strategy with an optimal number of

partitions guarantees minimal overall computational load and
achieves the fastest simulation speed.

The partitioning results for the IEEE 118-bus system are
listed below. Fig.4 illustrates the computational loads with
different number of partitions. It is seen that the optimal
number of partitions is 5. All the other loads are normalized
by this optimal load. Some detailed partitioning data are listed
in Table 1. Fig. 5 shows the 5-way partition scheme for the
IEEE 118-bus system.

TABLE I
PART OF THE PARTITIONING RESULTS

No. of
Partitions

No. of
Edge-Cuts

Load Imbalance Factor
for Updating the
History Terms

Load Imbalance Factor
for Solving Subsystems

2 7 1.000579 1.002198
3 9 1.007528 1.002198
4 18 1.002895 1.002198
5 24 1.007528 1.00
6 31 1.011002 1.002198
7 32 1.017371 1.015385
8 36 1.009844 1.019780
M M M M

117 269 1.287203 1.285711
118 297 1.298205 1.296703

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

10

20

30

40

50

60

Number of Partitions

Co
m

pu
ta

tio
na

l L
oa

d

Fig. 4 Normalized Computational Loads with Different Number of Partitions

V. CONCLUSION
Based on the analysis of computational load of power

system elements and the interlink communication cost, a
multilevel network partitioning method is employed to divide
the computation among the PC cluster processors for the
OVNI real-time simulator. For a given power system
structure, the partitioning program can generate an optimal
partitioning strategy in the context of the OVNI simulator.
Partitioning results for the IEEE 118-bus test system were
discussed in this paper.

Fig. 5 Network Partitioning Scheme for the IEEE 118-bus System

VI. REFERENCES
[1] J. A. Hollman, J. R. Martí, “Real Time Network Simulation with PC-

Clusters,” IEEE Transactions on Power Systems,” vol. 18, no. 2, pp.
563~569, May 2003.

[2] J. R. Martí, L. R. Linares, J. A. Hollman, F. A. Moreira, “OVNI:
Integrated software/Hardware Solution for Real-time Simulation of
Large Power Systems,” in Proceedings of the PSCC02, Sevilla, Spain,
June, 2002.

[3] H. W. Dommel, EMTP Theory Book (2nd edition). Vancouver, BC:
Micrtran Power System Analysis Corporation, 1996.

[4] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM Journal on Scientific
Computing, vol. 20, no. 1, pp. 359~392, 1998.

[5] B. W. Kernighan, S. Lin, “An efficient heuristic procedure for
partitioning graphs,” The Bell System Technical Journal, vol. 49, no. 2,
pp. 291~307, Feb. 1970.

[6] C. Fiduccia, R. Mattheyses, “A linear-time heuristic for improving
network partitions,” Technical Report 82CRD130, General Electric Co.,
Corporate Research and Development Center, Schenectady, NY, 1982.

[7] A. Pothen, H. Simon, K.-P. Liou, “Partitioning sparse matrices with
eigenvectors of graphs,” SIAM J. Mat. Anal. Appl., vol. 11, pp. 430~452,
1990.

[8] M. Fiedler, “Algebraic Connectivity of Graphs,” Czech. Math. J., vol.
23, pp: 298-305, 1973.

[9] B. Hendrickson and R. Leland, “A multilevel algorithm for partitioning
graphs,” Technical Report SAND93-1301, Sandia National Laboratories,
1993.

[10] G. Karypis and V. Kumar, “Multilevel k-way partitioning scheme for
irregular graphs,” Journal of Parallel and Distributed Computing, vol.
48, no. 1, pp. 96~129, 1998.

[11] G. Karypis and V. Kumar, “Multilevel algorithms for multi-constraint
graph partitioning,” in Proc. Supercompting'98, Orlando, 1998.

[12] G. H. Golub, C. F. Van Loan, Matrix Computations. Baltimore,
Maryland: The Johns Hopkins University Press, 1983.

[13] J. R. Martí, K. W. Louie, “A Phase Domain Synchronous Generator
Model Including Saturation Effects,” IEEE Trans. on Power Systems,
vol. 12, no. 1, pp. 222~227, February, 1997.

[14] R. Hung, H. W. Dommel, “Synchronous Machine Models for Simulation
of Induction Motor Transients,” IEEE Trans. on Power Systems, vol. 11,
no. 2, pp. 833~838, May 1996.

VII. BIOGRAPHIES
Peng Zhang (S’04) received his B.Sc. and M.Sc. degrees in Electrical
Engineering from Shandong University, China in 1996 and 1999, respectively.
He is currently pursuing the Ph.D. degree at the University of British
Columbia, Vancouver, BC, Canada. His research topics are in power system
real-time simulation, stability and control.
José Ramón Martí (S’79–M’80–SM’01–F’02) was born in Lérida, Spain. He
received the degree of Electrical Engineer from Central University of
Venezuela in 1971, the M.E.E.P.E. degree from Rensselaer Polytechnic
Institute in 1974, and the Ph.D. degree from the University of British
Columbia in 1981.

He has made contributions to the time-domain modeling of transmission
lines, transformers, and electrical machines, and has developed numerical
solution techniques for transient simulation programs and real-time
applications. He is currently a Professor at the University of British Columbia
and a Registered Professional Engineer in British Columbia, Canada.
Hermann W. Dommel (LF’01) was born in Germany in 1933. He received
the Dipl.-Ing. And Dr.-Ing. degrees in electrical engineering from the
Technical University Munich, Munich, Germany, in 1959 and 1962,
respectively. From 1959 to 1966, he was with the Technical University
Munich, and from 1966 to 1973, with Bonneville Power Administration,
Portland, OR. Since 1973, he has been with the University of British
Columbia, Vancouver, BC, Canada.

