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 Abstract-- This paper analyzes the computational complexity 
of power system elements and the interlink communication costs 
for the OVNI real-time simulator. Data dependencies in the 
system simulation are modelled as a weighted graph. A multilevel 
graph partitioning method is then used to divide the computation 
among the PC cluster processors. For a given power system 
network, the partitioning program can generate an optimal 
partitioning strategy in the context of the OVNI simulator. 
Partitioning results for the IEEE 118-bus test system are 
discussed in this paper. The partitioning strategy with an optimal 
number of partitions guarantees minimum overall computational 
load and achieves the fastest simulation speed. 
 

Keywords: graph partitioning, processor load balancing, 
OVNI, real-time simulation 

I.  INTRODUCTION 
BC’s Object Virtual Network Integrator (OVNI) real 
time simulator [1] is based on the MATE (Multi-Area 

Thevenin Equivalent) concept [2]. As a general circuit 
simulation algorithm, MATE extends the concepts of 
Multinode Thevenin Equivalents [3], Diakoptics and MNA. 
Applying the MATE concept to the EMTP formulas, the 
algorithm for the real time power system simulator can be 
briefly formulated as follows. 

Assume an electrical network consists of subsystems [A1], 
[A2],… [An], which are connected by a vector of link branches 
α. Then the MATE equation set for the system is 
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where  
Ai  = admittance matrix of subsystem [Ai] ( i=1,2,…,n) 
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pi  = link current injection matrix of  subsystem [Ai] 
hAi = history terms of subsystem  [Ai]  
VAi = nodal voltages of subsystem [Ai]  
iα   = current vector in link branches α 
z    = impedance matrix of branches α 

Equation set (1) is then rewritten as 
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where 
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As shown in (2), the MATE algorithm perfectly matches 
the concept of a cluster computing system, which consists of a 
collection of interconnected stand-alone PCs working together 
as an integrated real time computing resource. For instance, 
the master unit in a PC cluster can be in charge of receiving 
the updated history terms from the slave units, solving the link 
equations and distributing the links solution to the slave 
nodes.  Each subsystem solver (slave units) calculates its part 
of the network solution, updates its history terms and sends 
them back to the mater unit. 

Obviously, in order to efficiently explore real-time power 
system simulation capability of a PC cluster, it is an essential 
step to appropriately partition the power system so as to map 
the computational load onto the processors. In the context of 
the MATE solution algorithm of UBC’s OVNI real-time 
simulator, a good partition scheme should distribute to each 
processor a roughly equal number of computations while, at 
the same time, minimizing the number of link computations 
and the amount of inter-processor communication time 
between slave and master nodes. 

Graph models can be used to relate data dependencies in 
the power system simulation. Graph partitioning can then be 
used to divide the computation among the PC cluster 
processors. 

As a technique for balancing the load and minimizing 

U 



communication among processors when executing a set of 
tasks in parallel, graph partitioning is a NP-complete problem 
[4].  Due to this fact, almost all practical approaches to this 
problem are heuristics-based. The existing methods can be 
classified into categories, such as geometric [4], combinatorial 
and mathematical programming [5, 6], spectral techniques [7, 
8], and multilevel methods [9-11]. Among these, the 
multilevel methods, which can perform high quality 
partitioning, are the fastest methods so far. In this paper a 
multilevel recursive bisection approach is chosen as our 
solution method. Therefore, the emphasis in this paper lies not 
on the graph partitioning method itself but on the 
computational complexity and communication cost analysis of 
our real time simulator. 

II.  ELEMENT COMPUTATIONS 
This section analyzes the computational complexity of 

power system elements and MATE for the real time 
simulation. We assume that the MATE algorithm is based on 
the trapezoidal rule.  

In this paper, the computational complexity for updating 
the history terms in the OVNI simulator is quantified by the 
concept of a flop. As defined in [12], a flop constitutes the 
effort of doing a floating point add, a floating point multiply 
and a little subscripting. The following describes the way to 
calculate the number of flops for an element to update its 
history terms. 

A.  M Phase Nominal П-Circuit 
(1) Series connection of coupled R and L 
Suppose R and L are symmetrical. Fig. 1 illustrates a 3-

phase nominal П-circuit, where 

R =
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Fig. 1 Three-phase Nominal П-Circuit 

By using the Trapezoidal rule, the discrete time equation of 
the m-phase R-L circuit is [3] 

ijk(t) = GRL[uj(t) − uk(t)] − hRL(t)   (3) 
where the history term is 

hRL(t) =  − (I − GRLR) hRL(t − ∆t) 
   − 2(GRL − GRLRGRL)[ uj(t− ∆t) − uk(t− ∆t)] (4) 

and the equivalent resistance is 

GRL = 1
1

1

22
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−
−
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⎡ ∆

+
∆ LRLI tt    (5) 

According to (4), the number of flops for updating the 
history terms of the R-L circuit is 2(m2+m). If m = 3, then the 
number of flops is 24. 

(2) Coupled Capacitances 

By using the Trapezoidal rule, the discrete time equation of 
an m-phase C branch is 

ij(t) = GCuj(t) − hC(t)    (6) 
where the history term is 

hC(t) = hC(t − ∆t) + 2GC uj(t− ∆t)  (7) 
and the equivalent resistance is 

GC = C
t∆

2      (8) 

Then the number of flops for updating history terms of the 
C circuit is (m2+m). If m = 3, the number of flops is 12. 

For an m-phase П-circuit consists of R, L and C matrices, 
the total number of flops is 3(m2+m). 

B.  Transformers 
    If we neglect the core saturation effects, transformers can 
be represented in the form of the branch resistance and 
inductance matrix in Fig.1 [3].  
    Therefore, for a three phase three winding transformer, the 
number of flops for updating the history terms is 2(9m2+3m)  
= 180 with m=3. There are the same number of flops for a 
three phase autotransformer.  
    If the element is a three-phase two-winding transformer, 
then the number of flops is 2(4m2+2m) = 84.  

Here the formulas of the discrete time circuit equivalent are 
omitted due to space limits. 

C.  Synchronous Machine 
The equivalent equations of the electrical part of the phase-

coordinates three-phase synchronous machine model used in 
OVNI [13] are given below  

vs(t) =  − Req(t) is(t) + es(t)   (9) 
where 

Req(t) = 
t∆

2 { R1(t) − R2(t) [R4(t)]−1 R3(t) } (10) 

es(t) = R2(t)[R4(t)]−1[vr(t) − erh(t)] + esh(t)  (11)  
The R1(t)~ R4(t) are 3×3 matrices. The physical meaning of 

these matrices can be found in [13]. These matrices can be 
calculated from the linear interpolation of a series of pre-
calculated lookup tables, which requires 4m2 flops of 
calculation. 

An efficient method to calculate a matrix inverse is the 
Gaussian elimination in Chapter 4 of [12]. The number of 
flops needed of this method is [(m−1) m2 − (m−1) 2 m + m2 + 
(m−1) 3 /3], where m=3 is the dimension. Taking into account 
the effort to calculate the erh(t), esh(t) and the matrix/vector 
products/adds, the number of flops for updating the history 
terms is  [(m−1) m2 − (m−1) 2 m +  (m−1) 3 /3 + m2 ] + 4m2

 + 
m3 + 2(m+1) m + m + m2

 + m. 
Different from the non-rotating element, the Req(t) changes 

at each time step. The number of flops for updating the 
equivalent resistances is [(m−1) m2 − (m−1) 2 m + (m−1) 3 /3 + 
m2] + 2m3

 + m2. Thus the total number of flops for electrical 
part is the sum of these two numbers. 

The equivalent equations for the mechanical part are  
ωm(t) =  A–1 (t)C(t)    (12) 
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C(t) =  B(t)ωm(t−∆t)+∆tKm(t)θm(t−∆t)+
2
t∆ T(t−∆t) (15) 

    The total number of flops for the mechanical part is [(m−1) 
m2 − (m−1) 2 m + (m−1) 3 /3 + m2] + 6m. 
    For any other power system elements, for instance the 
induction machine, the number of flops for updating the 
history terms can be estimated in the same way above by 
examining the discrete time equivalent circuit of the element 
[14]. 

III.  NETWORK PARTITIONING METHOD 
As is discussed before, the goals of network partitioning 

during real time power system simulation with the OVNI 
simulator are as follows: 1) The computational load among 
processors should be balanced and, if necessary, the memory 
requirement of each PC should also be balanced; 2) The 
communication cost of different processors should also be 
roughly equal; 3) The number of links should be minimized. 

It has been found in [1] that the inherent needed 
communication time of a solver node is determined by the 
number of link branches between this node and its 
neighboring solver nodes. The communication time will be 
minimum if the number of links is minimized. Hence items 2) 
and 3) above become one. From a mathematical programming 
point of view, the third item can be considered as the objective 
and the first item can be considered as the constraint. 

It can be clearly seen that our network-partitioning problem 
for the OVNI simulator can be exactly modeled as a graph-
partitioning problem as below.  

1) We can consider a power system element (such as a 
transmission line, generator, transformer, load, etc.) as a 
weighted vertex v in a graph. Each vertex (element) v has a 
weight vector wv of size 2. Conceptually, the w1

v can be used 
to represent the number of computations for updating the 
history terms at each time step; w2

v can be set to 1 for each 
vertex. Let us explain the second weight in detail.  

As it is known, the main computational load of a subsystem 
solver (slave units) can be split into two parts. One part is the 
computational load for updating the history terms, which 
corresponds to w1

v. The other part is solving the subsystem 
nodal equations. We will not calculate the number of flops of 
this part of the computational load explicitly. Instead, we will 
do it implicitly by setting w2

v =1 for each vertex. If the second 
weight is perfectly balanced in the network partitioning, then 
it means that the dimension of each subsystem nodal equations 
is well balanced. Therefore, the computational load for 
solving the subsystem nodal equations will also be balanced 

among the slave processors.     
2) The physical links between elements can be modeled as 

an edge. Conceptually, the weight of the each edge can be set 
to p, where p is the number of phases of the link branch. Thus, 
the objective of the graph partitioning becomes to minimize 
the total number of links of the real time simulator.  

Figure 2 illustrates the transformation of the IEEE 30-bus 
system into a weighted graph.  

The graph partitioning problem is then defined [11] as 
follows. 

Consider a graph G (V, E) with |V| = n, where V is a set of 
weighted vertices such that each vertex Vv∈ has a weight 
vector wv=(w1

v, w2
v) and E is a set of scalar-weighted edges. 

Suppose the weight vectors of the vertices are normalized 
such that 0.1=∑

v

v
i

w  for i =1, 2. Given a positive integer k, 

find k subsets (partitions) V1, V2, …, Vk of V  satisfying 
VVi

k
i ==1U and Vi ∩Vj =Φ for i ≠ j , such that   

1) The edge-cut, i.e. the sum of the edge-weights whose 
incident vertices belong to different subsets, is minimized 
subject to the constraint 
2) ii cli ≤∀   ,  
where li is the load imbalance factor with respect to the ith 
weight  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

∈∀ j

i
Vv

v

ji wkl max   (16) 

ci
 (≥1.0) can be set close to 1.0 to guarantee a perfect load 

balancing. 
 
 
 
 
 
 
 
 
 
 

Fig. 2 IEEE 30-bus System and Its Graph Description 

This multi-constraint graph partitioning problem can be 
solved by a multilevel recursive bisection method [11]. After 
recursively calling the bipartitioning functions for about log2k 
times, the original graph G0 is divided into k parts. The 
recursive bisection tree for a 16-way partitioning is shown in 
Fig.3, where the nodes except for the leaves represent the 
bipartitioning of a graph (subgraph). Each node processing 
includes three stages: graph coarsening, initial partitioning and 
refinement. 
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Fig. 3 Recursive Bisection Tree 

A.  Graph Coarsening 
First normalize the vertex weights for the graph to 

partition. 
Graph coarsening of an original graph G0 means 

transforming G0 into a coarser graph G1, by collapsing 
together selected vertices of G0. Taking the coarser graph as 
the original graph and iteratively call the coarsening routine, a 
series of graphs G2, G3,…,Gc-1, are constructed until a 
sufficiently small graph Gc is obtained. An efficient method 
suitable for multi-constraint partitioning is the combination of 
the heavy edge matching (HEM) and balancing edge heuristic 
[10]. 

B.  Initial Bipartitioning 
Let Gc = (V, E) is the coarsest graph to be partitioned into 

two balanced subgraphs GA= (VA, EA) and GB= (VB, EB). The 
bipartition algorithm proceeds as follows. 

1) Select a vertex Vv∈ randomly, set VA= {v}, VB= V \VA. 
Create two FIFO priority queues;  

2) All vertices BVu∈  are inserted into the two queues 
according to the following rule: u  belongs to the jth queue if 

wj
u = u

ii
wmax  (i, j ∈{1, 2}); 

3) If BB V
ii

V
j ww max= , then the jth queue is selected. If the 

jth queue is empty, choose the nonempty queue corresponding 
to the second heaviest weight (in this 2-constraint case, simply 
choose another queue). Move the top vertex in the jth queue to 
GA; 

4) Repeat 3) until one of the weights of GA, say the ith 

weights, satisfies ∑∑
∈∈

≥
Vu

u
i

Vu

u
i ww

A
2
1

. 

C.  Uncoarsening and Refinement 
The concept of the gain of a vertex Vv∈ is first 

introduced.  The gain gv is the reduction on the edge-cut if v is 
moved from one partition Vi to another 

    ∑∑
∈∧∈∉∧∈

−=
ii VuEvu

vu

VuEvu

vuv wwg
   ),(

),(

   ),(

),(   (17) 

Also define the boundary of a partition Vi as 
    { }ii

V VuEvuVvvB i ∉∧∈∧∈=    ),( |  (18) 
At this stage, the coarser graph Gc is projected back to the 

original graph G0 by going through the intermediate graphs 
Gc-1, Gc-2,…, G1. During each projecting step, two refinement 
algorithms are called. Here assume the intermediate graph to 
be refined is Gf (Vf, Ef). 

a. Weight Balancing Algorithm  

1)  Create 2 FIFO queues for each of the 2 partitions.  All 
the vertices in a partition are inserted into the 2 queues for this 
partition according to the same rule as step 2) in stage B.  

2)  If },{},2,1{ ,max BAjiww jl V
ii

V
k ∈∈= , then the kth 

queue for partition Vl is selected. Pick a vertex from this queue 
and move it to another partition, such that the two partitions 
are best balanced. If the selected queue is empty, then select 
the nonempty queue corresponding to the second largest 
weight in the same partition. The moved vertex is then locked. 

3) Iterate step 2) for |Vf| times. 

b. Edge-cut Reduction Algorithm 

1)  Create 2 FIFO queues for each partition. Only the 

vertices in jVB ( },{ BAj∈ ) are inserted into the queues for 
this partition, according to the same rule as step 2) in stage B.  

2)  If },{},2,1{ ,max BAjiww jl V
ii

V
k ∈∈= , then the kth 

queue for partition Vl is selected. Pick a vertex with the largest 
gain from this queue and move it to another partition. If the 
selected queue is empty, then select the nonempty queue 
corresponding to the second largest weight in the same 
partition. The moved vertex is then locked and the gains of 
other boundary vertices are updated. 

3) Repeat step 2) for N times, say, N =10. 

IV.  NETWORK PARTITIONING OF THE TEST SYSTEM 
Based on the computational load analysis of OVNI, the 

IEEE 118-bus test systems was investigated by using the 
multilevel network partitioning program. 

The load imbalance factor li with respect to the ith weights 
and the edge-cuts are employed to evaluate the partitioning 
results, 

∑

∑

∈

∈∀
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

==

Vv

v

Vv

v

j

iav

i
i kw

w

l
l

l
i

j

i

/

max

,

max,   (19) 

A graph G can have at most |V| partitions. However, if the 
number of partitions increases, the computational load to solve 
the link equations in MATE may also increase. The 
disadvantage due to the increase of link branches may 
overwhelm the advantage due to the reduction of computation 
loads on slave processors. The partitioning program is 
designed to find the optimal number of partitions under these 
constraints. Assume the computational load on slave processor 
i is lslave, i and the load for solving the link equations is llink. 
Then the total computational load ltotal can be estimated as 

ltotal = llink + islavei
l ,max     (20) 

Perform repeated runs of partitioning and scan the number 
of partitions, then the optimal number of partitions will be 
found.  The partitioning strategy with an optimal number of 



partitions guarantees minimal overall computational load and 
achieves the fastest simulation speed. 

The partitioning results for the IEEE 118-bus system are 
listed below. Fig.4 illustrates the computational loads with 
different number of partitions. It is seen that the optimal 
number of partitions is 5. All the other loads are normalized 
by this optimal load. Some detailed partitioning data are listed 
in Table 1. Fig. 5 shows the 5-way partition scheme for the 
IEEE 118-bus system. 

TABLE I 
PART OF THE PARTITIONING RESULTS 

No. of 
Partitions 

No. of 
Edge-Cuts 

Load Imbalance Factor 
for Updating the 
History Terms 

Load Imbalance Factor 
for Solving Subsystems

2 7 1.000579 1.002198 
3 9 1.007528 1.002198 
4 18 1.002895 1.002198 
5 24 1.007528 1.00 
6 31 1.011002 1.002198 
7 32 1.017371 1.015385 
8 36 1.009844 1.019780 
M  M  M  M  

117 269 1.287203 1.285711 
118 297 1.298205 1.296703 
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Fig. 4 Normalized Computational Loads with Different Number of Partitions 

 

V.  CONCLUSION 
Based on the analysis of computational load of power 

system elements and the interlink communication cost, a 
multilevel network partitioning method is employed to divide 
the computation among the PC cluster processors for the 
OVNI real-time simulator. For a given power system 
structure, the partitioning program can generate an optimal 
partitioning strategy in the context of the OVNI simulator. 
Partitioning results for the IEEE 118-bus test system were 
discussed in this paper. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Network Partitioning Scheme for the IEEE 118-bus System 
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