
A method for coupling electromagnetic transients
programs with finite element magnetic field solvers

E. Melgoza,member, IEEE, J. L. Guardado,Senior member, IEEE, V. Venegas

Abstract— A method for coupling electromagnetic transients
programs and finite element field solvers is introduced. The
field model takes into account the detailed structure of the
magnetic device, including saturation effects, and provides a set
of parameters in the form of an inductance matrix, which is
then communicated to the transients program. The parameters
are updated at each time step to reflect the true operating point of
the device. The effect of the time delay between the computation
of the parameters and their use in the transients program is
investigated.
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I. I NTRODUCTION

The detailed modeling of saturable components is often
required in transient simulations to accurately reproduce phe-
nomena such as inrush currents, ferro-resonance, harmonic
generation and propagation and others. Similarly, it is nec-
essary to predict the performance of a magnetic device at the
design stage, taking into account system characteristics and
the external network. These analysis tasks have been tackled
by two kinds of numerical codes, namely circuit simulators
and field solvers.

Circuit simulators perform an efficient solution provided
a circuit model can be specified for the device. In the case
of one-winding devices, it is not difficult to obtain a set
of current-flux linkage pairs, thus characterizing the nonlin-
ear behavior of the component. Transients programs provide
support for these two-terminal saturable components. Things
get complicated, though, for multi-winding devices: the off-
line calculation of current-flux linkage tables is impractical
when the number of windings exceeds two or three [1];
moreover, transients programs do not support multi-winding
table models of saturable components and as a result, the
nonlinear behavior is modeled by using a single two-terminal
nonlinear inductance. Thus, although a fair set of tools for
modeling magnetic components exist in transient programs,
there is still the need to consider more detailed models, as in
the case of zero-sequence flux in multiphase transformers.
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Consideration of magnetic saturation is provided by mag-
netic circuit models [2]. In this approach, each section of the
core and the air leakage paths are modeled as a network of
magnetic reluctances; the magnetic circuit model is coupled
to the electrical network using duality concepts. Some simpli-
fications are necessary in order to construct magnetic circuit
models: uniform flux distribution in core sections and assumed
flux trajectories in the air.

Field solvers, for instance one based on the finite element
method (FEM), can accurately take into account the material
nonlinearity and winding connections to yield a solution for
the magnetic field distribution. Field solvers have evolved
to take into account the effect of eddy currents, material
anisotropy and hysteresis. One can distinguish between static
and transient field solvers, where in the latter case a time
stepping process is performed. The natural source of exci-
tation for magnetic field problems is a current density and
therefore the incorporation of voltage sources into the model
is only possible by constructing an augmented system of
equations, where the field and circuit equations are solved
simultaneously. However, field solvers do not provide the
variety of power system components needed for a full-scale
simulation, like multiphase transmission lines, circuit breakers,
control systems, etc. Addition of the necessary components
to the coupled field-circuit codes is a possibility, hampered
by several factors such as unavailability of source code for
the circuit solver and effort duplication. Another approach,
explored in this contribution, is the coupling of separate circuit
and field simulators, communicating through a set of variables
at each time step; in this way, existing codes are used and the
experience accumulated in their development is preserved.

In order to achieve the communication between field and
circuit solvers, the huge amount of information provided by the
field solution must somehow be compressed into a meaningful
way before it is fed back to the circuit solver. The most
natural way of doing this is through the well known concept
of inductance, a quantity associated with each terminal pair
by means of self and mutual coefficients. The rest of the
paper is organized as follows: first, the concept of differential
inductance and an efficient method for its computation are
reviewed. The mechanism for the communication between the
field solver and the transients program is then discussed, with
special reference to ATP (Alternative Transients Program);
finally, simulation results obtained with the proposed method
are presented.



II. A PPARENT AND DIFFERENTIAL INDUCTANCE

We must distinguish between two definitions of inductance
[3]. The apparent inductance is the usual relation:

La =
λ

i
. (1)

On the other hand, the incremental or differential inductance
is defined as:

Ld =
∂λ

∂i
. (2)

Each of these definitions leads to a different simulation
scheme.

A. Apparent inductance

If the inductance is a function of the current given by

La = La(i), (3)

then the voltage on the device terminals is

v =
d

dt
(Lai) = La di

dt
+ i

dLa

dt
. (4)

The last term can be written as

dLa

dt
=

dLa

di

di

dt
, (5)

so that

v =
(

La + i
dLa

di

)
di

dt
, . (6)

B. Differential inductance

If the flux linkage is a function of current given by

λ = λ(i) (7)

then

∆λ =
∂λ

∂i
∆i. (8)

Dividing by a small∆t and taking the limit leads to

dλ

dt
=

∂λ

∂i

di

dt
, (9)

from where

v = Ld di

dt
. (10)

A comparison of expressions (6) and (10) reveals that the latter
is more easily incorporated into existing codes, since it takes
the same form as that of a constant inductance. Therefore,
the differential inductance will be used as the basis for the
field-circuit coupling.

III. I NDUCTANCE MATRIX COMPUTATION

The key element in the coupling method is the determination
of the (differential) inductance matrix. Several schemes have
been proposed for its computation [3], [4]. In the following
paragraphs, we review the method proposed in [4].

Assuming a plane Cartesian geometry, the resulting mag-
netic field equation is:

∂

∂x

(
ν

∂Az

∂x

)
+

∂

∂y

(
ν

∂Az

∂y

)
+ Jz = 0, (11)

whereν is the material reluctivity,Az is the normal compo-
nent of the magnetic vector potential andJz is the normal
(and only) component of current density. Equation (11) is
discretized by the finite element method, resulting in the
nonlinear algebraic equation

K(a)a + f(i) = 0, (12)

whereK is the stiffness matrix,a is the vector of unknown
nodal magnetic vector potentials andf is the force vector,
which is a function of the currenti in the windings. In (12),
the currenti is the independent variable, and the computation
yields a as a dependent variable. Equation (12) has the form

F(a, i) = 0. (13)

The inductance matrix computation proceeds by calculating
the sensitivity of the magnetic vector potential[a] to a change
in the currentiw in the windings:

∂F
∂a

∂a
∂iw

= − ∂F
∂iw

, (14)

where ∂F
∂a is the Jacobian matrix of system (13),∂F

∂a can be
calculated from the geometry of the model and∂a

∂iw
is obtained

by solving the indicated linear equation. On the other hand,
the flux linkage is a function of the magnetic vector potential,
from where∂λ

∂a can be calculated. Combining the two vectors
one has

∂λv

∂iw
=

∂λv

∂a
∂a
∂iw

, (15)

which is an entry of the differential inductance matrix. For a
more detailed treatment of the inductance computation process
for the Cartesian case, as well as for the axisymmetric case,
see [4].

It is assumed that the inductance computation is performed
after convergence of the nonlinear magnetic field problem has
been achieved, for a given set of input currents. Therefore, in
the inductance computation, the Jacobian matrix is available
from the preceding nonlinear iteration. For each winding, the
solution of a linear equation is required, and the inductance
matrix is obtained column-wise. If a factorization of the
Jacobian matrix is available, the computation of the inductance
matrix is very efficient.



IV. COUPLING WITH THE TRANSIENTS PROGRAM

Once calculated, the inductance coefficients are fed into the
transients program. The form in which this is done depends
on the particular implementation being used: there must be a
way of stopping the transients program time stepping, calling
an external program (which in this case is the finite element
program), and read the updated values of the parameters. Also,
the inductance values are one step behind because the current
levels used in its calculation are those from the previous
time step. In the literature referring to coupled problems, this
approach is called weak coupling, because the circuit and
field simulations use parameters separated one time step. A
strong coupling can only be achieved by writing and solving
the extended equation. The consequences of this time lag are
discussed below. The transients program we have used in this
implementation is ATP. The control of an external program
can be implemented through the facilities provided by the
TACS (Transient Analysis of Control Systems) and MODELS
components. For the implementation discussed here, the TACS
facilities have been selected in the form of a device type 69
for the control of the external field solver; this facility allows
the incorporation of arbitrary user code in any programming
language as long as the object can be linked with the ATP,
as reported in [5]. As for the updating of the inductance
coefficients, two possibilities arise: the first is to use RLC
branches to specify the inductance coefficients as calculated by
the field solver, and the second to resort to an associated circuit
(equivalent resistance and current source) for each inductance.

A. TACS-controlled RLC branches

TACS-controlled resistances and voltage or current sources
are well known. Recently, support for TACS-controlled RLC
branches has been added [5], opening the possibility of sup-
plying a set of inductance values. Initial tests, however, have
convinced us not to follow this path for the following reasons:
only un-coupled branches are supported at the moment, and
there seems to be some kind of checking of the arguments,
since the program stops with a run-time error when one of the
inductance coefficients is negative; also, for constant or nearly
constant inductance values the results do not seem correct. As
a result, this approach can not be used at the moment; however,
it is our impression that making the necessary adaptations to
the program source code could make this route the right path
to follow.

B. Associated circuits

Since the direct specification of inductance coefficients
(coupled or not) is not satisfactory, we have had to use
the associated circuit of an inductance after integration by
the trapezoidal rule, just as the constant inductances are
discretized by the transients program logic [6]. This is possible
since TACS allows the specification of resistance and current
sources to be connected to the electrical network; one possible
scheme for including the system of coupled inductances is
to synthesize an equivalent network of TACS-controlled un-
coupled resistances. For instance, a two-winding transformer

has a four-entry inductance matrix given by

[L] =
[

L11 L12

L21 L22

]
. (16)

Assuming that both windings are grounded, then an equivalent
π or T network of un-coupled inductances can be found [7].
The inductances are converted to a parallel connection of a
resistance and a current source following the trapezoidal rule.
The transient simulation is started by ATP using initial values
for the inductances and calculating a set of winding currents.
At the end of the time step, the TACS part is executed and
a call the external finite element program is made, which
supplies updated inductance values. The TACS-controlled re-
sistance network is updated and the process repeated for the
remaining time steps.

C. Time lag

It is well known that inaccuracies result from the time lag
introduced by the TACS computation of nonlinear elements
[8]. To illustrate the effects of this time lag in the inductance
values, we present the solution of the simple network shown
in Fig.1, where the nonlinear inductance is given by

λ = tanh(i) + 0.01i (17)

(for simplicity, this analytic function is specified as an external
Fortran function, and is not the result of a field model). The
circuit parameters are:V s = 400cos(2πft − φ) V, t ≥ 0s,
R = 0.05Ω, f = 60Hz, φ = 90o.

Figs. 2–4 compare the nonlinear ATP solution with the ATP-
TACS solution for various time step sizes; the differential
inductance was specified, as discussed above. It is seen that
for a large time step, the weak coupling solution is inaccurate,
although stability is preserved. For smaller time steps, the
accuracy is improved; satisfactory results, however, are only
obtained with a very small time step (0.00001)s, which is
about 10 times smaller than the step size required for the
ATP nonlinear solution. Applied to a coupled field-circuit
model, however, this solution to the time delay problem can
be impractical since the number of field equations far exceeds
the number of circuit equations and at each time step several
iterations of the nonlinear magnetic field problem have to be
calculated.

Compensation has been used to alleviate the time delay
problem [8]. However, the authors are unsure whether this
approach is available in ATP. Another possible solution would
be the use of a prediction formula to try to approximate the
true value of the currents over the next time step, but this
does not really solve the problem of the coupling. Clearly, a
sort of iteration is needed in order to achieve a more tightly
coupled solution and therefore allow the use of a larger time
step. In ATP, this could be implemented in the form of an
iterated type 94 device in Models, or the issuing of SPY
commands to force a number of ATP-TACS iterations for each
time step. Incidentally, the compensation approach requires
iteration inside TACS [8], so that repeated solution of the finite
element equations would be required at each time step. These
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Fig. 1. Test circuit with nonlinear inductor (17).
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Fig. 2. Current in nonlinear inductor (17) solved by nonlinear (ATP) data
case and ATP-TACS (time step0.001s).

approaches are being investigated, but no conclusions can be
offered at this stage. In the following, the basic scheme with
TACS and a reduced time step is used.

V. COUPLED ATP-FEM SOLUTION

For the transformer geometry shown in Fig. 5, the coupled
solution of the energization transient has been obtained. The
secondary of the transformer was left open, so that the circuit
reduces to the case of a single nonlinear inductance, as shown
in Fig. 1. The circuit parameters are:V s = 50cos(2πf − φ)
V, t ≥ 0s, R = 0.05Ω, f = 60 Hz, φ = 90o.

In order to compare the ATP-only solution (obtained by
modeling a nonlinear inductor, type 93) against the ATP-FEM
coupled solution, a table of current-flux linkage was calculated
using the finite element program, resulting in the values
shown in Table I. The corresponding profiles of apparent and
differential inductance are shown in Fig. 6. It is interesting
to note how, although the flux linkage curve is monotonically
increasing, the apparent and differential inductance profiles
show peaks and valleys in the low-current region. This is
due to the way the flux distributes inside the core and in the
surrounding air region and the shape of the BH curve of the
magnetic material.

Figs. 7 and 8 show the current and voltage in the primary
winding of the transformer for a time step of0.001s. The
values calculated by ATP alone (with the winding modeled as
a nonlinear inductance), are compared against those calculated
by the ATP-FEM coupled scheme. The accuracy is not good,
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Fig. 3. Current in nonlinear inductor (17) solved by nonlinear (ATP) data
case and ATP-TACS (time step0.0001s).
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Fig. 4. Current in nonlinear inductor (17) solved by nonlinear (ATP) data
case and ATP-TACS (time step0.00001).

Fig. 5. Flux contours from finite element solution of the magnetic vector
potential. An air region surrounding the magnetic core is shown.
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Fig. 6. Apparent and differential inductance as a function of current, for
transformer primary winding.

TABLE I

FLUX LINKAGE (TRANSFORMER PRIMARY WINDING).

Current (A) Linkage (mWb)
0.5 7.611042
1.0 15.222563
1.5 22.840930
2.0 30.458964
2.5 38.099410
3.0 45.136547
3.5 51.813802
4.0 59.480589
4.5 67.505614
5.0 73.390009
6.0 78.707155
7.0 81.589619
8.0 83.736003
9.0 85.498725
10.0 87.016969
20.0 96.585016
50.0 108.205983
100.0 116.358387
1000.0 194.508814

although stability is not lost; this confirms what had been
observed for the analytic inductance expression above. The
accuracy of the current is the worst affected, while the voltage
values are closer to the true values.

A smaller time step yields better results, as shown in Figs.
9 and 10, where the time step is0.0001s. The current values
are considerably closer to the reference value, and the voltage
values are practically the same. In this case, the time step sizes
of both the ATP-only and of the ATP-FEM solutions where
0.0001s, so that the accuracy is better than expected.

Finally, Fig. 11 compares the calculated primary currents
when a time step of0.00001s. The accuracy is only slightly
improved and the added computational cost is not justified in
this case.

The time required to simulate the whole transient is obvi-
ously larger for the ATP-FEM coupled solution, because the
solution of a finite element nonlinear problem is required at
each time step, which involves the repeated solution of a set of
equations whose number is around 1000 for the test case, or
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Fig. 7. Current in the primary winding of the transformer during energization.
Time step is0.001s.
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Fig. 8. Voltage in the primary winding of the transformer during energization.
Time step is0.001s.

larger for more detailed field models. Each time step requires
an iteration process, where the number of iterations depends
on the current level: for low current, 3 iterations are generally
enough, but for the cases with current of hundreds of amperes,
around 10 iterations are needed. For the cases tested, a time
step of0.0001s results in a simulation time of a few minutes
for the ATP-FEM scheme, compared with a few seconds for
the ATP-only solution.

VI. CONCLUSIONS

A method for obtaining coupled solutions for circuit-field
cases has been presented. The method relies on the compu-
tation of differential inductance coefficients for the magnetic
structure, and the communication of those inductance values
to the transients program, where the required discretization
is used to update the electrical network parameters. The fact
that current values are used to calculate the inductances used
in the next time step introduces a time lag which results in
accuracy problems, forcing a small time step if accuracy is to
be maintained. Remedies for this accuracy problem have been
proposed in the context of other nonlinear TACS elements,
and further work is being carried out for this purpose.

Another area to improve is the mechanism to feed back
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Fig. 9. Current in the primary winding of the transformer during energization.
Time step is0.0001s.
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Fig. 10. Voltage in the primary winding of the transformer during energiza-
tion. Time step is0.0001s.
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Fig. 11. Current in the primary winding of the transformer during energiza-
tion. Time step is0.00001s.

the inductance coefficients into the transients program. Un-
coupled TACS-controlled resistances and current sources had
to be used in the present implementation, because initial tests
using the more direct updating of un-coupled RLC branches
yielded mixed results. Also, the addition of TACS-controlled
coupled RLC branches would be very convenient for the kind
of work discussed here, provided the a general implementation
(and not only one where an earth path is assumed) is contem-
plated. Nonetheless, the coupling of a transients program and
a finite element solver has been demonstrated, opening the
way for future developments, for instance field modeling of
tranmission lines, cables and electrical machines.
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