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 Abstract—This work presents a methodology for deriving a 
sparse network equivalent representation in the phase-domain 
based on time-domain fitting. The proposed formulation 
corresponds to a Norton Equivalent (admittance in parallel with a 
steady state current source) for three-phase system 
representations. The equivalent admittance is a polynomial 
matrix in the z-domain. Imbedding a set of constraints in the 
fitting equations, which are solved using quadratic programming, 
attains the robustness of the representation, i.e. stability and 
passivity. Results demonstrating the features of the derived 
representation are presented for the case of a three-phase circuit 
comprised by an alternating voltage source and a transmission 
line.  
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I.  INTRODUCTION 

or electromagnetic transient studies, a detailed 
transmission system representation can become 

unacceptable in digital simulations, due the complexity and 
size of modern power systems. Besides, it requires a heavy 
computational effort, especially in applications for real-time 
transient calculations. The adopted solution for large system is 
to have a detailed representation of the region of great interest, 
usually called study system, and to represent the remaining 
system, called external system, by network equivalents. To 
analyze the transient phenomena with high accuracy, it is 
necessary to obtain equivalents that are accurate and also 
stables. For network equivalent representations, the derived 
impedance or admittance can be obtained in modal domain, as 
addressed in several works [1]-[5] or in the phase-domain as 
shown here.   

The goal of this work is to obtain network dynamic 
equivalents for transient studies considering: a phase-domain 
representation, the internal sources of the study system, the 
accuracy. This work presents network equivalents described by 
a technique based on time-domain fitting, which was used, 
initially, for transmission line representation in the phase-
domain [6]. Here, sparse network equivalents in phase-domain 
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for the three-port1 case are obtained to represent a three-phase 
system taking internal sources into account. The proposed 
formulation corresponds to the multiphase Norton Equivalent 
Circuit (admittance matrix in parallel with a steady state 
current source vector) shown in Fig.1, which is suitable to 
represent traveling wave effects in transmission lines. 

Fig. 1.  Network equivalent in the frequency domain. 

Each element of the admittance matrix is a rational 
polynomial function in the z-domain. Also, to ensure 
robustness, stability and passivity constraints are included in 
the fitting process to determine the equivalent network 
parameters by forcing the poles of the fitted functions to be 
inside the z-plane unity circle and by forcing the eigenvalues 
of the real part of the admittance matrix )(ωY to be positive. 

The fitting equations and constraints are solved simultaneously 
using quadratic programming [7], [8] and the degree of 
sparsity of the parameters is adjusted to control the accuracy of 
the system representation. The chosen equivalent form can be 
easily integrated into transient calculation routines. It is also 
closely related to the topology of digital filters. This facilitates 
the implementation of the derived model for the purpose of 
real-time transient calculation in computers with limited 
architecture, as in the case Digital Signal Processing (DSP) 
cards.  

The methodology to obtain the network equivalent is 
presented as follows: section II presents how to calculate the 
equivalent admittance matrix including the topics: parameter 
identification, determination of the parameters order, sparsity, 
stability and passivity requirements. In section III it is shown 
how to obtain the current source. Results are discussed in 
section IV and Conclusions are presented in section V. 

II.  EQUIVALENT ADMITTANCE 

The admittance matrix parameters are obtained from time-
domain fitting of the computed transient response of the 
system in phase-domain. For the sake of clarity, the theory will 
be explained for single-port and, then, three-port networks. 

                     
1Each  terminal (interface) between study and external systems is called port. 
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A.  Fitting Equations 

Consider the single-port linear network of Fig. 2. In the z-
domain, the current and voltage are related as 

( )1)().()( 111 zVzYzI =
in which ( )zY1  is the rational function: 
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The order p of the polynomials )(za  and )(zb  is assumed to 

be the same. Taking the inverse z transform of (1), the current 
in the time-domain is:
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     The right hand side of (3) represents a conductance 0b  in 
parallel with a current source, accounting for the summation 
term, which is computed only from past values. This form 
facilitates the integration of the line representation into the 
EMTP (Electromagnetic Transients Program). Once the 
current and voltage time-domain waveforms are available, the 
identification of the coefficients of )(za  and ( )zb  can be done 
rewriting (3) as: 
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Assuming zero initial conditions and that the current and 

the voltage at each time step ∆t are available totaling N data 
points, the above equation can be written in matrix compact 
form:
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 Where the submatrices I and V , in (5), are given as: 
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Fig. 2.   Single-port network. 
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Here, it is assumed that N >> p leading to an 
overdetermined system for which a solution in the least 
squares sense is obtained.  A constrained optimization method 
is used in order to achieve stability and passivity criteria. The 
system is stable if all the roots of )(za in (2) are inside the unit 

circle. If unstable, the coefficients of )(za  are modified until 

all roots are within the unit circle. The system is passive, i.e. a 
dissipative network, if the real part of the admittance is positive for 
all frequencies (for the multi-port case the eigenvalues of the 
corresponding matrix must be larger than zero). If not passive, 
modify the coefficients of )(zb until a passive representation is 

reached. The fitting equations and constraints are solved 
simultaneously by means of an optimization technique based 
on quadratic programming. 

The above procedure is extended and applied to multi-port 
network equivalents as in the case of the three-phase system 
representation shown in Fig. 3. In the z-plane, the current and 
voltage are related according to: 
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Here, all elements of the admittance matrix ( )zY are rational 

functions in the z-plane sharing the same poles, i.e. the same 
denominator )(za :
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Note that k in k
ijb  is not an exponent. It identifies the 

coefficient of kz − . The first term of )(za  is equal to 1. 

The admittance matrix, in (8), is symmetric. Then, only the 
parameters for the six elements shown in the lower partition 
need to be determined. The parameter identification in (9) is 
computed from short-circuit tests at the three-phase system 
ports. The tests are performed directly in the phase-domain 
with all voltages and current sources of the external system in 
Fig. 3 set to zero. A unit-step voltage is applied to ports 1, 2 
and 3 at a time.  

 
 
 
 

Fig. 3.  Three-port network equivalent. 
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The voltages and currents waveform data from the short-
circuit tests are put into matrix form similar to (6) and (7), 
respectively, and used to build up the general set of equations 
for the determination of the parameters in the least squares 
sense: 

( )10sxR =

where,  [ ]Tbbbbbbax 333222312111= ; 
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In vector x, a  represents )(za , the set of p coefficients of 

the denominator, and each ijb  is the set of p+1 coefficients of 

the numerator for each element ( )zYij  of the admittance 

matrix (see (9)); the total number of variables is p+6(p+1); n
mi  

in vector s represents the current into port m when the voltage 
source is connected to port n during the short-circuit test. The 
dimension of s is 6N×1; in matrix R, nV  is a submatrix of 

voltage as in (6) and n
mI  is a submatrix built using the data 

from n
mi  as in (7). The dimension of R is 6N×(p+6(p+1)). For 

the parameter estimation, one needs to determine the order p 
and the sparsity and to ensure stability and passivity. These 
issues are described next. 

B.  Determination of the Order p 

Following the approach used in [5], [6], the Singular Value 
Decomposition (SVD) method is used to determine p. The 

submatrices n
mI  in matrix R  are initially built using a value for 

p much larger than the presumed order for the network 
representation. As N >> p, the initial value used can be half of 
the data points number, N. SVD is applied to the lower 

partitions of each submatrix n
mI  (matrix portion below dashed 

line of (7)). This procedure results in six different values for 
the first estimate for p. Here, the chosen value in each SVD 
analysis is equal to the number of singular values that are 
around 108 times larger than the smallest singular value. Since 
the admittance matrix elements share the same denominator 

)(za , only one value of p is required, which is the largest one. 

Considering modal domain representation, the SVD procedure 
for the ground mode would indicate a value of p smaller than a 
suitable one in this case (due to the high losses in the ground 
mode, the traveling waves corresponding to the reflections at 
the farthest nodes are attenuated). Thus, p for the ground mode 
is determined for multiplying the obtained value by a factor 
greater than one which accounts for the differences in the 
travel times of the modes. Here, based on an investigation, the 

calculated p is multiplied by a factor equal to 1.5 for obtaining 
a high degree of sparsity in the parameter calculations. 

C.  Sparsity in the Identification of the Parameters 

The described method leads to an accurate representation 
with respect to the overall fitting but it is non-sparse. The 
order of the representation, p, can be large, depending on the 
time step used and the travel time of the line, leading to a large 
number of the parameters (equal to 7p+6 for stability routine) 
which should be submitted to quadratic programming routine 
(Matlab Optimization Toolbox), posing difficulties to its 
convergence. To overcome this limitation and to reduce the 
computational effort in transient calculations, a sparse 
representation is then obtained. Sparsity is considered in the 
parameter calculations with the elimination of some of the 
parameters setting them to zero, as follows: 

1) Estimate the parameter order p (explained in section 
II.B);  

2) Obtain a basic solution for a  and ijb  using (10);  

3) For the user-defined sN  (number of nonzero 

coefficients for each set a  and ijb ), only the positions of the 

sN  largest coefficients of each set of parameters are 

identified: a  and ijb  are recalculated; 

 4) Modify the matrix R in (10), keeping only the columns 
corresponding to the positions of the sN  largest coefficients 

of each set. The other columns are, obviously, eliminated once 
its corresponding coefficients of each set will be zero;  

5) Solve (10) with the reduced matrix R. Each calculated 
parameter should be put to the correspondent position in 
solution vector x. The remaining coefficients are set to zero, 
resulting in the sparse basic solution for each set a  and ijb ; 

 6) Check for stability and passivity of the network 
representation using the requirements presented in section 
II.D. Check for the desired overall fitting error. If the stability, 
passivity and fitting requirements are not satisfied in a 
predetermined number of iterations, sN  is increased and the 

steps 2 to 6 are repeated. 

D.  Stability and Passivity Requirements  

Stability and passivity criteria must be satisfied for a 
passive network. From of the analysis of the admittance matrix 
in (8), the stability and passivity constraints are obtained from 
linearization and the set of equations is solved by means of 
constrained optimization using Quadratic Programming. 

• Stability 

Each element of the admittance matrix in (8) is a rational 
function in the z-domain, )(/)( zazbij , with the same 

denominator. The representation is stable if each root of the 
scalar polynomial )(za  have absolute value smaller than 1. If 

an unstable solution from (10) is obtained, increments a∆  are 
calculated to be added to a  in the solution vector x , in order 
to move unstable roots to within the unit circle. The set of 



stability constraints is  formulated as 

 
1≤+∆ US zaJ

        ⇒     
( )111 US zaJ −≤∆  

where Uz  is the set of  unstable roots of )(za and SJ  is the 

jacobian matrix where each element is [5]: 
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where jz  is each unstable root in the set Uz  and ia  is each 

coefficient of the set a . 

• Passivity 
For any exciting complex voltage, the passive behavior of 

the network representation is ensured if the active power 
towards the network is always positive. Then, the real part of 
the admittance matrix in (8), matrix )(ωG , must be positive 

definite [9], [10]. Thus, all eigenvalues of )(ωG must be larger 

than zero. The passivity constraints are expressed as a function 
of the set of coefficients ijb  only. The first step is to identify if 

there is at least one negative eigenvalue of )(ωG  in each 

frequency considered2. If this is the case, the passivity criterion 
is violated and increments ijb∆  for all set of coefficients ijb  

are calculated in such a way that each eigenvalue becomes 
positive. The second step is to identify each frequency iω  in 

which there is any eigenvalue iλ  of )(ωG smaller or equal to 

10-6.  Since the approach is based on linearization, one needs 
the partial derivative that relates each eigenvalue iλ  to each 

element (denoted by k) of the coefficient set ijb . This can be 

written as the product of two partial derivatives: 
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The first partial derivative is an indication on how a small 
perturbation in each element ( )iijG ω  would affect each 

eigenvalue iλ . This term is calculated numerically. In fact, 

since ( )ωG  is a real symmetric matrix, its eigenvalues are real 

and the perturbation, for the off diagonal elements, has to be 
applied to two elements at a time. This is done multiplying 
these elements by a number very close to 1 to allow the 
numerical calculation of the derivative of ( )ωG .3  The results 

are used to approximate the partial derivative as 
)( iiji G ωλ ∆∆ . The second term is an indication on how a 

small perturbation in each element of the coefficient set ijb  

                     
2 )(ωG  is calculated for Nf equally spaced frequency points in the 

normalized frequency range πω <≤0 . For the first loop in the passivity 
routine Nf  is assumed to be 100. For the subsequent loops, Nf  is assumed to 
be 1000 and 10,000 respectively. 
3 The number chosen here is 1.0005 which is a suitable number to be used in 
connection with the optimization technique described in Section II.A. 

would affect its corresponding element ( )iijG ω . It is 

calculated analytically as [5]: 
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The passivity constraint to be solved simultaneously to the 
fitting equations is then 

0>+∆ i
k
ijPb bJ λ ⇒ ( )15i

k
ijPb bJ λ<∆−  

where, PbJ  represents the jacobian matrix in which each 

element is calculated using (13) and k
ijb∆  is each increment to 

be added to the non-passive solution for each k
ijb . 

E.  Final Remarks 
Due to non-linearity in the relations between constraints 

and increments a∆  and k
ijb∆ , the procedure to obtain a robust 

sparse phase-domain network representation is iterative and 
has two main steps: the stability criterion is addressed first and 
then the passivity. It can be stated as follows: From the basic 
solution for x  in (10) (with the modifications for the sparsity), 
the roots of )(za  are calculated and the set of roots with 

absolute values greater or equal to .99 is identified and then 

SJ  is calculated. Equation (10) is modified to include the 

stability constraint: 
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This problem is solved using quadratic programming 
(Matlab Optimization Toolbox), as 

( )17
2
1

xfxHx TT ∆−∆∆  

subject to exD ≤∆ , where RRH T=  and [ ]RxsRf T −= . 

A correction ∆x is calculated in each iteration resulting in 
the updated solution ux  as xxxu ∆+= . This follows until the 

stability requirement is satisfied. In the second step, the 
passivity enforcement, the calculated stable set a remain the 
same and (16) is modified accordingly: 

( )[ ] ( )18min k
ijba

k
ijb

b
bRaRsbR

k
ij

−−−∆
∆

subject to  i
k
ijPb bJ λ<∆− , where bR  is the part of matrix 

R  related to k
ijb ; aR  is the part of matrix R  related to a. A 

correction k
ijb∆  is calculated in each iteration, resulting in the 

updated set k
ij

k
iju bbb ∆+= . Once passivity is satisfied, the 

iterative process is finished. For each iteration, in this passivity 
routine, the entire eigenvalues are not submitted to quadratic 
programming routine. The passivity requirement is reached 
gradually, thus the eigenvalues have a small variation in each 
iteration. 



III.  CURRENT SOURCE   

The consideration of the internal sources is possible for 
transient calculations from the steady state. Thus, the initial 
conditions must be calculated. This process is especially 
facilitated for steady state for a given frequency 0ω  (here, 

corresponding to 60 Hz). The first step is to obtain the 60 Hz 
steady state opened-circuit voltage waveforms at ports 1, 2 and 
3 using the phase-domain three-phase system with the internal 
sources in Fig. 3 from simulations carried out with 
PSCAD/EMTDC [11]. The steady state voltage in each port 
(denoted for i), iVss , is specified as phasor in a routine 

developed in Matlab [12] to perform electromagnetic 
transient calculations using the proposed equivalent, as: 

( ) ( )[ ] ( )19jcos iiii VanglesinVangleVmodVss +=  

where iVmod  and iVangle  are the absolute value and the 

angle of opened-circuit voltage in each port, respectively. 
In this situation, the voltage and current are related by the 

equivalent admittance value at the digital frequency 

d0ω (corresponding to 60 Hz), ( )djeY 0ω , which is calculated 

using (2), considering the calculated parameters in section II. 
Thus, the corresponding current phasor in each port, iIss , is 

calculated using: 
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To account for initial conditions, it is shown in (3) that an 
appropriate set of past voltage and current values must be 
calculated, which are included in Matlab transient routine. The 
past values for voltage, in each port, are given using the 
counterpart of (19) in time-domain: 

( ) ( ) ( )21cosmod2 0 iii VangletnVpnv +∆=++ ω
and from (20), the corresponding current values are: 

( ) ( ) ( )22cosIm2 0 iii Iangletnodpni +∆=++ ω
where n = -1, -2,…,-p ; iodIm  and iIangle  are the absolute 
value and the  angle of current in each port, respectively. The 
current source for the Norton equivalent in each port, iIsc , is 
calculated using: 
      ( ) ( )( ) ( )231cosIm 0 iii IangletkodkIsc +∆−ω=  

where k = 1,…,N. N is a number of points from the transient 
beginning until the final simulation time.  

IV.  RESULTS 

An 69 kV three-phase circuit composed by a ideal 
sinusoidal voltage source of 1 p.u. and an untransposed 
transmission line in Fig. 4 is used to demonstrate the 
technique.  

A.  Parameters Identification  

PSCAD/EMTDC was used to produce the short-circuit  
waveform data required (voltage and current sequences), 
described in section II.A, as input data to a Matlab routine 
developed to identify the parameters of the equivalent.  A 20  

Fig.4.  Untransposed three-phase transmission line. 
µs time step and a simulation time of 5 ms are used. As a 
measure of accuracy (using voltage curve, as an example), the 
overall fitting error, Ferror, is calculated as  

( )24EMTDCEMTDCSDTNEerror VVVF −=
where SDTNE and EMTDC subscripts refer to sequences 
using the Sparse Discrete-Time phase-domain Network 
Equivalent calculated with Matlab and the EMTDC phase-
domain model, respectively. The order of the equivalent is 
determined applying SVD to current matrices. Singular values 

for the current matrices 1
1I , 1

2I , and 1
3I  are shown in Fig. 5, 

assuming, as a first estimate, the value of p to be equal to 100.  
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Fig. 5.  Singular values. 

The obtained value is 66. The value of the order used here 
is 100 obtaining a value for sN  equal to 13. Thus, the number 

of calculated parameters is 91 (7 sN ) instead of 468 (7p+6), 

reducing the complexity of the problem and the computational 
effort. The largest absolute value among the roots of )(za  is 

0.9966, which means that the representation is stable and the 
stability routine is not necessary for this case. The matrix 

)(ωG  has a total of 660 negative eigenvalues for 10,000 

frequency points, which means that the passivity routine is 
required. Using the passivity routine, all eingenvalues become 
positives, leading to a passive representation with the lowest 
eigenvalue being equal to +5.4360x10-6. Fitting errors are 
calculated comparing the calculated current sequences with the 
current sequences obtained from PSCAD/EMTDC 
simulations (short-circuit tests). The largest error, based on 
(24), is 2.5013x10-2. Therefore, the resulting parameters are 
quite satisfactory. If the time step changes it is necessary to do 
a refitting. 

B.  Electromagnetic Transient Calculations 

To further check the equivalent performance, transient 
simulations are carried out according to Fig. 6. Resistances 
equals to 1.2 Ω are connected at 1, 2 and 3 ports when the 

Conductor: 
RDC = 239.234 mΩ/km 
Diameter = 1.63068 cm 
Soil Resistivity = 324 Ω.m 
Length = 60 km 
 
              

1.20 m 

9.54 m 

3.40 m 
1.20 m 



switches are closed at t = 54,18 ms. First of all, the steady state 
opened-circuit voltage peak value at three ports obtained from 
simulations and the closed time are passed to Matlab transient 
routine. Thus, the initial conditions and the steady state current 
source in time-domain can be calculated according to section 
III. Voltage and current curves at three ports are obtained 
using EMTDC and SDTNE representation, using the same 
time step and the simulation time equal to 200 ms. The voltage 
and current curves at port 3, shown in Fig. 7, present the 
largest fitting errors calculated, using (24), equals to 
2.1561x10-2 and 1.8205x10-2, respectively. 

Fig. 6. Electromagnetic transient calculations. 
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Fig. 7.  Voltage curves at port 3 (EMTDC and SDTNE). 
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Fig. 8.  Current curves at port 3 (EMTDC and SDTNE). 

 

V.  CONCLUSIONS 
A methodology for deriving a sparse network phase-domain 

equivalent based on time-domain fitting has been presented.  
The main contributions are: a phase-domain representation, 

considering general network configurations; routines to 
enforce stability and passivity in the equivalent and sparsity in 
the parameter calculations. To demonstrate the performance of 
the derived representation, transient calculations were carried 
out for a three-phase system with internal sources. Voltage and 
current curves at the system ports were compared to transient 
simulations using the SDTNE implemented in Matlab and 
phase-domain model of EMTDC with noticeable agreement. 
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