
 

Abstract—In this work a new model for analyzing single phase 
non uniform transmission lines with frequency dependent 
electrical parameters is presented. The model is based on 
synthesizing an equivalent uniform transmission line and can be 
used when the non-uniformities are symmetric with respect to the 
center of the line. The frequency and the space dependence of the 
electrical parameters of the non uniform line are introduced into 
the equivalent uniform line by means of a transient resistance 
and a shunt transient conductance. 
 

Index Terms—Non uniform line, Frequency dependent 
parameters, method of characteristics, transient parameters. 

I.  INTRODUCTION 
or a number of practical cases, such as when one wants to 
take into account sagging effects or when nonlinear 

phenomena occurs on some points of a Transmission Line 
(TL), a knowledge of the voltage and currents on interior 
points is required. In those cases a discretization of the 
transmission line length is necessary. Although subdivision of 
the line in a number of sections for EMTP simulation is 
possible, this procedure is cumbersome and a great deal of 
experience is needed in order to define the optimal number of 
line sections. Moreover, oscillation problems have been 
reported when simulating nonlinear problems using 
Bergeron´s method [1]. 

The method of characteristics, one of several solution 
methods that discretize both time and distance, has been used 
successfully in calculating transients on transmission lines  
with non-uniformities and nonlinear effects. It has been 
reported that this method does not present the numerical 
oscillations that are very common in finite difference methods 
[2-5]. 

In a recent paper by Semlyen, a new model for time domain 
analysis of nonuniform multiconductor lines  has been 
presented [6]. This  work is  based on the chain matrix and the  
key  idea is the  determination  of  the  frequency   domain 
propagation   functions   of   an   equivalent   two-port  model.  
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For the case of a single-phase line this method requires the 
approximation of 10 parameters by rational functions (5 for 
each transmission line’s end). Moreover in some cases the 
propagation functions can be non-smooth and damping 
techniques for time domain simulations should be used [7]. 

In this work the problem of electromagnetic transients in 
single phase non-uniform transmission lines (NULs) with 
frequency dependent electrical parameters is analyzed. In 
particular, non-uniformities with a point of symmetry at the 
center of the line are considered. 

The model proposed in this work is based on synthesizing 
an equivalent uniform transmission line (UTL) from the chain 
matrix of the NUL. The frequency and the space dependence 
of the electrical parameters of the NUL are introduced into the 
equivalent UTL by means of a transient resistance and a 
transient conductance. This new model requires the 
approximation of only these two electrical parameters by 
rational functions. 

Results obtained with the proposed method are compared 
with those obtained with a Numerical Laplace Transform 
program (NLT) [8-10], the ATP and a field experiment 
published elsewhere [16]. 

II.  CASCADED CONNECTION OF CHAIN MATRICES 
The 2-port frequency domain representation of a single-

phase transmission line segment of length ∆x is as follows: 

⎥
⎦

⎤
⎢
⎣

⎡
∆=⎥

⎦

⎤
⎢
⎣

⎡
∆+
∆+

),(
),(

),(
),(
),(

sxI
sxV

sx
sxxI
sxxV

Φ                   (1) 

where Φ(∆x,s) is the chain or ABCD matrix given by: 
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being γ  the propagation constant: 

ZY=γ                                    (3a) 

and Y0 the characteristic admittance of the line segment: 
ZY /0 γ=                                    (3b) 

Z and Y are the longitudinal impedance and transversal 
admittance of the segment. Eq. (1) can be used to construct a 
model for non-uniform transmission lines. The procedure 
consists of (a) dividing the non-uniform line in several 
segments, (b) computing the chain matrix of each segment and 
(c) putting together all the chain matrices into an equivalent 
matrix for the whole line. After dividing the transmission line, 
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the entire equivalent chain matrix is obtained as the product, in 
the appropriate order, of the whole set of chain matrices, as 
follows [11, 12]: 
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being L the line length and ( )iΦ  the chain matrix for the i-th 
line segment. In compact form (4a) becomes 
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III.  TRANSIENT  PARAMETERS OF A NON-UNIFORM LINE 
For a symmetrical non uniform line, the values of A, B, C 

and D of Eq. (4b) can be defined as:  
( )LA nuγcosh=                                (5a) 

( )LYB nunu γsinh1
,0
−=                        (5b) 

( )LYC nunu γsinh,0=                        (5c) 

AD =                                                (5d) 
where the subscript nu denotes values corresponding to the 
complete non-uniform line. The propagation constant γnu is 
computed from (5a) as follows: 

( ) LAnu /arccosh=γ                             (6) 

while the characteristic admittance Y0,nu  is computed from 
(5c) and (6): 

( )LCY nunu γcsch,0 =                            (7) 

From Eq. (3b): 

nununu YZ ,0/γ=                               (8) 

and from Eq. (3a) and (8): 

( ) nununu ZY /2γ=                              (9) 

Applying (8) and (9), a uniform line model equivalent to the 
non-uniform line can be proposed : 
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Znu and Ynu can be written as follows: 

Gnu sLsRZ += )('   ,  Gnu sCsGY += )('            (11a)                   

where R’(s) and G’(s) represent the transient resistance and 
conductance of the line, while LG and CG are the geometric 
inductance and capacitance computed at a mean value of the 
line non-uniformity. From (11) the transient electrical 
parameters are given by: 

Gnu LsZsR −= /)('   ,    Gnu CsYsG −= /)('     (12a,b) 

As explained in the next sections, these values can be 
included in time domain analysis by means of recursive 
convolutions using rational approximations. 

IV.  TIME DOMAIN ANALYSIS 
The Telegrapher Equations of a single phase transmission 

line, including frequency dependence of the line electrical 

parameters, are defined as follows [13]: 
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where r’(t) and g’(t) are the time domain transient longitudinal 
resistance and shunt conductance, respectively. If R’(s) and 
G’(s) are synthesized using rational functions and applying the 
Leibnitz’s rule [14], the line equations can be expressed as 
follows 
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GLkD += ∞ ,  GCmE += ∞ ,           (15e), (15f) 

Besides, ki and pi are the poles and residues of the rational 
approximation of R’(s), while mi and qi are the poles and 
residues of the rational approximation of G’(s). These poles 
and residues are computed using the technique known as 
vector fitting [15]. 

A.  Numerical treatment of the recursive convolutions. 
If Ψ(s) is the Laplace domain spectrum of the recursive 

convolution ψ given in (15a), the rational approximation of 
Ψ(s) with complex conjugate pairs of poles and residues is 
given by the following expression:  
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where N1 is the order of the approximation and: 
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where: 
**
iiiii pkpka +=                                                 (18) 

*
iii ppb =  , *

iii kkc += ,   *
iii ppd +=     (19a,b,c) 

                  
Coefficients ai, bi, ci,  and di are always real. Eq. (17) can be 
written as: 

)()(2 sIcbsIsabsds iiiiiiii +=Ψ+Ψ+Ψ         (20) 



 

or in the time domain: 
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Applying the central differences rule to (21) and in accordance 
to  (16), the total convolution can be written as follows: 
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and similarly for φ 
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where the real coefficients ei, fi, gi,  and hi are given by: 
**
iiiii qmqme +=     , *

iii qqf =                    (24a,b) 
*
iii mmg += ,      *

iii qqh +=                          (24c,d) 

B.  Method of characteristics. 
Equations (14a) and (14b) can be represented as: 
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(26a), (26b), (26c), (26d) 
The eigenvalues of A are given by: 

DE±=2,1λ ,                               (27) 

and the eigenvectors are given by: 
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where: 
1,/ −== WWW ZYEDZ            (29a), (29b) 

By left multiplying (14a) and (14b) times ML and applying 
(27) and (29): 
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Along the characteristic curves defined by λ = ± dt/dx, the 

following equivalence can be applied: 
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Using (31) in (30) it can be written: 
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C.  Numerical Solution - Internal point 
A numerical form of (32) can be found using finite 

differences. Assuming that v and i are known at points R and S 
as shown in Fig. 1, it can be written: 
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Combining (33a) and (33b), expressions for the voltage and 
current at point L can be found: 
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Figure 1. Characteristics grid. 
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The subscript L-n∆t denotes values corresponding to n time 
steps backward from point L. 

D.  Numerical Solution - Boundary points 
Consider an ideal voltage source vH = f(t) connected to the 

initial boundary point H (x = 0), as shown in Fig. 1. In this 
case (34b) can be solved for for iH : 
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For the final boundary point M (x = L), as shown in Fig. 1, 
the connection of a resistive load RL is considered:  

LMM Rvi /=                                 (45) 

Considering  (45), from Eq. (34a) it can be written:   
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V.  APPLICATION EXAMPLE. 

A.  Sagging Between Towers. 
A single line 600m long with a sagging between towers is 

analyzed. The line maximum and minimum heights are 28m at 
the towers and 8m at the middle span. A unit step voltage 
source is connected to the sending node, while the receiving 
node is left open. Fig. 2 shows the voltage at the receiving end 
of the line, comparing the results obtained with the Numerical 
Laplace Transform, the ATP and the method of 
characteristics. Results when the line presents no sagging (UL) 
are also included. Figs. 3 and 4 show a comparison of 
frequency spectrums of the transient resistance and 
conductance of the NUL, computed using Eq. (12), against 
those spectrums obtained with the vector fitting technique.  
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Figure 2. Voltage at the receiving end of the line. 
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Figure 3. Transient resistance. 
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Figure 4. Transient conductance. 

 

B.  Simulation of a Field Experiment. 
As second application example, the proposed method is 

applied to the simulation of a field experiment performed by 
Wagner, et al. [16]. The experiment consists on injecting a 
step like wave at one end of a 2185.4m long line divided in 7 
equal segments, as shown in Fig. 5. Each segment has a length 
of 312.2m. The line maximum and minimum heights are 
26.2m at the towers and 15.24m at the middle span. The 3 line 
conductors are ACSR with radius of 2.54cm. The injected 
wave is applied simultaneously to the 3 conductors at the 
sending node, while the receiving node is left open. For the 
simulation, the line is represented by a single-phase 
equivalent. 

The voltage at the receiving end of the line is shown in Fig. 
6, comparing the experimental results and those obtained with 
the method of characteristics. Waveforms were plotted as half 
of their actual magnitude, as done in [16], to remove the 
doubling due to the open circuit. 

 
 

 
 

Figure 5.  Configuration of the non-uniform line. 
 

 
Figure 6.  Voltage at the receiving end of the line. 

VI.  CONCLUSIONS 
A time domain model for analyzing single phase non 

uniform transmission lines with frequency dependent 
electrical parameters has been presented. The model is based 
on synthesizing an equivalent uniform transmission line from 
the chain matrix of the NUL. The application examples show 
very good agreement between the results obtained with the 
proposed method and those produced by the Numerical 
Laplace Transform program, ATP and a field experiment. 
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