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 Abstract-- This paper describes the application of the 
wavelets used to detect the abrupt changes in the signals 
recorded during disturbances in the electrical power network in 
South Africa. Main focus has been to estimate exactly the time-
instants of the changes in the signal model parameters during the 
pre-fault condition and following events like initiation of fault, 
circuit-breaker opening, auto-reclosure of the circuit-breakers 
using the wavelet transform, particularly the dyadic-
orthonormal wavelet transform. The key idea is to decompose the 
fault signals into effective detailed and smoothed version using 
the multiresolution signal decomposition technique based on 
discrete wavelet transform. Then we apply the threshold method 
on the decomposed signals to estimate the change time-instants, 
segmenting the fault signals. After segmenting the fault signal 
precisely into the event-specific sections, further signal 
processing and analysis can be performed on these segments, 
leading to automated fault recognition and analysis. In the scope 
of this paper, we focus on the first task i.e., segmentation of the 
fault signal into event-specific sections using the wavelet 
transform and threshold method. This paper presents application 
on recorded signals in the transmission network of South Africa. 
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I.  INTRODUCTION 
ETECTION of abrupt changes in signal characteristics is 
a much studied subject with many different approaches. 

It has significant role to play in failure detection and isolation 
(FDI) systems; one such domains viz., power systems fault 
analysis is the focus of this paper. In this paper, we propose 
the use of the wavelet transform, particularly the dyadic-
orthonormal wavelet transform for estimating the time-instants 
of the abrupt changes in the power system fault signals. 

Wavelet transform is particularly suitable for the power 
system disturbance and fault signals which may not be 
periodic and may contain both sinusoidal and impulse 
components. Also, for the power system fault analysis, time-
frequency resolution is needed which states another reason for 
using the wavelet transform because it provides a local 
representation (both in time and frequency) of a given signal 
unlike the Fourier transform which provides a global 
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representation of a signal. In particular, the ability of the 
wavelets to focus on short intervals for high-frequency 
components and long intervals for low-frequency components 
improves the decomposition of the fault signals into finer and 
detailed scales, facilitating further effective signal processing 
and analysis. 

In this paper, wavelet transform is used to transform the 
original fault signal into finer wavelet scales, followed by a 
progressive search for the largest wavelet coefficients on that 
scale [1]. Large wavelet coefficients that are co-located in 
time across different scales provide estimates of the changes 
in the signal parameter. The change time-instants can be 
estimated by the time-instants when the wavelet coefficients 
exceed a given threshold (which is equal to the ‘universal 
threshold’ of Donoho and Johnstone [2] to a first order of 
approximation). 

The remainder of this paper is organized as follows. In 
Section-II, wavelet transform is reviewed briefly. In Section-
III, power system fault analysis as application domain is 
discussed. In Section-IV, signal decomposition using wavelet 
transform is discussed. Utilization of the threshold method for 
segmentation is explained in Section-V. Practical application 
results are presented in Section VI, and conclusions are given 
in Section VII. 
 

II.  WAVELET TRANSFORM ANALYSIS 
The Wavelet transform (WT) is a mathematical tool, like 

the Fourier transform for signal analysis. A wavelet is an 
oscillatory waveform of effectively limited duration that has 
an average value of zero. Fourier analysis consists of breaking 
up a signal into sine waves of various frequencies. Similarly, 
wavelet analysis is the breaking up of a signal into shifted and 
scaled versions of the original (or mother) wavelet. In Fig. 1, 
we show the basis functions for Fourier transform (Sine wave) 
and WT (db10: Daubechies 10 mother wavelet [3]). 

 
Fig. 1.  Basis Functions for Fourier Transform & Wavelet Transform 

 
 Fourier analysis does not provide good results for the non- 
stationary signals, i.e., where the signal parameters change 
over the time unlike the stationary signal, because in 
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transforming the complete signal to the frequency domain, the 
time information gets lost in Fourier analysis. This deficiency 
in the Fourier analysis can be overcome to some extent by 
analyzing a small section of the signal at a time - a technique 
called windowing the signal, first proposed by Dennis Gabor. 
This leads to an analysis technique called Short-Time Fourier 
Transform (STFT). But the drawback in STFT is that the size 
of the time-window is same for all frequencies. Wavelet 
analysis overcomes this deficiency by allowing a windowing 
technique with variable-sized regions, i.e., wavelet analysis 
allows the use of long time intervals where we want more 
precise low-frequency information, and shorter regions where 
we want high-frequency information. In Fig. 2, we show the 
time-domain (Shannon), frequency-domain (Fourier), STFT 
(Gabor) and wavelet views of signal analysis. 

 
Fig. 2.  Time, Frequency, STFT, Wavelet views of signal analysis 

 
While detail mathematical descriptions of WT can be 

referred to in [3], [4], a brief mathematical summary of WT is 
provided in the following sections in relation to the 
application domain within the scope of this paper. 

A.  Continuous Wavelet Transform 
The continuous wavelet transform (CWT) is defined as the 

sum over all time of the signal multiplied by scaled and 
shifted versions of the wavelet function ψ . The CWT of a 
signal  x(t) is defined as  
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)(tψ  is the mother wavelet, the asterisk in (1) denotes a 

complex conjugate, and ,0,, ≠∈ aRba  (R is a real continuous 
number system) are the scaling and shifting parameters 
respectively. 2/1|| −a  is the normalization value of )(, tbaψ  so 

that if )(tψ  has a unit length, then its scaled version )(, tbaψ  
also has a unit length. 

B.  Discrete Wavelet Transform 
Instead of continuous scaling and shifting, the mother 

wavelet maybe scaled and shifted discretely by choosing 
kTtbnabaa mm === ,, 000  in (1), where 0.1=T  and ,,, Znmk ∈  

(Z is the set of positive integers). Then, the discrete wavelet 
transform (DWT) is given by 
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By careful selection of 0a  and 0b , the family of scaled and 

shifted mother wavelets constitutes an orthonormal basis. An 
orthonormal basis is a basis that consists of a set of vectors S  
such that 0=u.v  (here ‘.’ indicates the dot product) for each 
distinct pair of Svu ∈, . We can choose 20 =a  and 10 =b  to 
constitute the orthonormal basis to have the WT called a 
dyadic-orthonormal WT. The implications of the dyadic-
orthonormal WT is that due to the orthonormal properties 
there will be no information redundancy in the decomposed 
signals. Also, with this choice of 0a  and 0b , there exists a 
novel algorithm, known as multiresolution signal 
decomposition [5] technique, to decompose a signal into 
scales with different time and frequency resolution.  

C.  Multiresolution Signal Decomposition and Quadrature 
Mirror Filter 

The Multiresolution Signal Decomposition (MSD) [5] 
technique decomposes a given signal into its detailed and 
smoothed versions. Let x[n] be a discrete-time signal, then 
MSD technique decomposes the signal in the form of WT 
coefficients at scale 1 into c1[n] and d1[n], where c1[n] is the 
smoothed version of the original signal, and d1[n] is the 
detailed version of the original signal x[n]. They are defined 
as 
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where h[n] and g[n] are the associated filter coefficients 

that decompose x[n] into c1[n] and d1[n] respectively. 
Downsampling is done in the process of decomposition so that 
the resulting c1[n] and d1[n] are each n/2 point signals. Thus, 
for the original n point signal x[n], after the decomposition we 
have n point signal together with c1[n] and d1[n], not 2n point. 

The next higher scale decomposition will be based on c1[n]. 
Thus, the decomposition process can be iterated, with 
successive approximations being decomposed in turn, so that 
the original signal is broken down into many lower resolution 
components. This is called the wavelet decomposition tree [4]. 

MSD technique can be realized with the cascaded 
Quadrature Mirror Filter (QMF) [4] banks. A QMF pair 
consists of two finite impulse response filters, one being a 



low-pass filter (LPF) and the other a high-pass filter (HPF). 
The QMF pair divides the input signal into low-frequency and 
high-frequency components at the dividing point of halfway 
between zero hertz and half the data sampling frequency. The 
output of the low-pass filter is the smoothed version of the 
input signal and used as the next QMF pair’s input. The 
output of the high-pass filter is the detailed version of the 
original signal. Thus cascaded QMF pairs realize the MSD 
technique. Detail description about QMF can be found in [6]. 
Fig. 3 shows the MSD technique and QMF pair.  

 
Fig. 3.  Multiresolution Signal Decomposition 

III.  POWER SYSTEM FAULT ANALYSIS 
We consider the power system fault analysis as our 

application domain in the scope of this paper. More 
specifically, we focus on the automated fault analysis for the  
transmission network in South Africa. Presently, 98% of the 
transmission lines are equipped with the digital fault recorders 
(DFRs) on the feeder bays, with an additional few installed on 
the Static Var Compensators (SVCs) and 95% of these are 
remotely accessible via a X.25 communication system [7]. 
The DFRs and the associated settings are applied for the 
purpose of protection performance and disturbance analysis 
[8]. The DFRs trigger due to reasons like, power network fault 
conditions; protection operations; breaker operation and the 
like. Following IEEE COMTRADE standard [9], the DFR 
recordings are provided as input to the analysis software 
which uses Discrete Fourier Analysis and Superimposed 
current quantities [7]. 

The purpose of this study is to augment the existing fault 
analysis system with more robust and accurate algorithms and 
techniques to make it fully automated. So, we would first 
apply the abrupt changes detection algorithms to segment the 
fault recordings into different segments, viz., pre-fault 
segment, after initiation of fault, after circuit-breaker opening, 
after auto-reclosure of the circuit-breakers. Then on the each 
different segments specific signal processing and analysis 
would be performed to accomplish the fault recognition and 
analysis tasks. In the scope of this paper, we focus on the first 
task i.e., segmentation of the fault recordings by detecting the 
abrupt changes in the characteristics of the fault recordings 
using the WT. As power system fault and disturbance signals 
consist of abrupt changes, sharp edges, transitions and the 

like, so WT analysis as proposed in this paper is quite suitable 
and accurate for the purpose. 

IV.  SIGNAL DECOMPOSITION 
 In this section, we apply the multiresolution signal 

decomposition technique and quadrature mirror filter banks to 
decompose the fault signals from the DFRs into localized and 
detailed representation in the form of wavelet coefficients. 
Daubechies 1 and 4 wavelets are used as mother wavelets, i.e., 
the filters h[n] and g[n]  as in (4) & (5) are chosen with one 
and four coefficients respectively and calculated as in [3]. 
Daubechies 1 wavelet can also be referred as ‘Haar’ wavelet 
[4].  

Among many other choices of the mother wavelets, e.g., 
Coiflets, Meyer wavelet, Gaussian wavelet, Mexican hat 
wavelet, Morlet wavelet etc [3], Daubechies 1 and 4 wavelets 
have been chosen because Daubechies wavelets are compactly 
supported [3] wavelets with extremal phase and highest 
number of vanishing moments for a given support width [3], 
also the associated scaling filters are minimum-phase filters 
[3]. So, from the point of views of fast implementation and 
varying patterns of the fault signals, Daubechies wavelets 
appear to be the optimal choice for the mother wavelet for this 
specific application. 

Daubechies 1 wavelet has the following mathematical 
description. 

The scaling function )(xφ  is defined as 
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The wavelet function )(xψ  for this scaling function is 

defined as 
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Fig. 4 shows the wavelet function for the Daubechies 1 

mother wavelet. 

 
Fig. 4.  Daubechies 1 Wavelet Function 

 
For the Daubechies 4 wavelet, the scaling function )(xφ  

has the form 
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It is not possible in general to solve directly for )(xφ ; the 

approach is to solve for )(xφ  iteratively until )(xjφ  is very 

nearly equal to )(1 xj−φ , where 
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The Daubechies 4 wavelet function )(xψ  for the four- 

coefficient scaling function is given by 
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                                                                                             (14) 

The Daubechies 4 scaling function and wavelet function 
are shown in Fig. 5 (a) & (b) respectively. 

 
(a)                                                    (b) 

 
Fig. 5.  Daubechies 4: (a) Scaling Function, (b) Wavelet Function 

 
After transforming the original fault signal using the 

mother wavelets described above, we obtain the smoothed and 
detailed versions, viz., c1[n] and d1[n] [see (4), (5)]. Signal 
d1[n] can be considered to be the difference between the 
original signal x[n] and c1[n], and called the wavelet transform 
coefficient at scale one. We will use d1[n] for threshold 
checking to estimate the change time-instants described in the 
following section.   

V.  APPLICATION OF THRESHOLD METHOD 
We will use the threshold method on the wavelet transform 

coefficients of the original fault signal to detect the jumps and 
sharp cusps [10] in order to estimate the time-instants of the 
abrupt changes. Mathematically we say that signal x(t) has a 
sharp α -cusp at t if for 10 <≤α , 

 

α|||)()(| tKtxttx ∆≥−∆+ ,                                          (15) 
 
as 0→∆t  for some constant 0≥K . We can consider it to be 
a jump if 0=α . In practice, we can consider a cusp to be an 
abrupt change of the level of the trend over a small time 
period. 

As discussed in the previous section, after transforming the 
original fault signal using the wavelet transform, we will 
search progressively across the finer wavelet scales for the 
largest wavelet coefficients on that scale [1]. As wavelet 
coefficients are the changes of the averages, so a coefficient of 
large magnitude implies a large change in the original signal. 
Large wavelet coefficients that are co-located in time across 
different scales provide estimates of the cusp points [1] hence 
time-instants of the abrupt changes. The change time-instants 
can be estimated by the instants when the wavelet coefficients 
exceed a given threshold which is equal to the ‘universal 
threshold’ of Donoho and Johnstone [2] to a first order of 
approximation. 

The universal threshold T is given by 
 

nT elog2σ= ,                                                             (16) 
 

where σ  is the median absolute deviation of the wavelet 
coefficients, divided by 0.6725 [2] and n is the number of 
samples of the wavelet coefficients. Instead of standard 
deviation median absolute deviation is used because median is 
hardly influenced by a small fraction of extreme values [10]. 

After determining the time-instants when the wavelet 
coefficients of the fault signal exceed the threshold, we mark 
them using unit impulses, indicating the abrupt change time-
instants. 

VI.   APPLICATION RESULTS 
In this section, we present the practical application results 

of the power system fault analysis method developed 
according to the above discussed signal decomposition and 
representation using the WT and then applying the threshold 
method on the detailed version of the fault signal, followed by 
heuristic smoothing filtering operation. MATLAB® with 
Wavelet toolbox [11] has been used for implementing the 
application. The whole procedure detects the change time-
instants thus segments the fault signal. We are interested in the 
change time-instants to be indicated as unit impulses. 

After normalizing the original fault signal using its mean 
value, it is transformed into the smoothed and detailed version 
using the WT and then the threshold method is applied on the 
detailed version to determine the change time-instants. Then 
smoothing filter operations are applied on this segmented 
model to perform sequentially the following smoothing 
operations: 

• It removes confusing multiple close-spikes and 
combines them into single unit impulse. 



• It removes any unwanted glitches which can 
otherwise result in false positives for the abrupt 
changes. 

 
• The segments in the power system fault analysis 

signals are during the pre-fault condition and 
following events like fault initiation, circuit-breaker 
opening and reclosing. These events are predefined 
and so are the number of segments. So, any bigger 
number of segmentation possibly indicates transients, 
power swings and the like. Estimation of the number 
of segment(s) is also performed and checked. 

 
• Based on the modeling of the segments, analysis is 

done for estimating the event-critical change instants, 
rejecting others. 

 
Fig. 6 shows the result for the fault signal, sampled at a 

sampling frequency of 2.5 kHz [7], obtained from the Eskom 
DFRs during a phase to ground fault. The WT uses 
‘Daubechies 1’ [3] mother wavelet. 

 

 
 

Fig. 6.  Segmentation of the RED-Phase Current signal 
 
In Fig. 6, the original DFR recording for the current during 

the fault in the RED-Phase is shown in the top section, 
wavelet coefficients for this fault signal (in blue) and the 
universal threshold (in black, dashed) are shown in the middle 
section and the change time-instants computed using the 
threshold checking (middle section) followed by smoothing 
filtering is shown in the bottom section. It is to be noted that 
only the high-pass filter output of the QMF pair is shown, so 

the wavelet coefficients in the middle section indicate half of 
the total samples of the original signal.  The time-instants of 
the changes in the signal characteristics, in the lower plot in 
Fig. 6, indicate the different signal segments owing to 
different events during the fault, e.g., segment A indicates the 
pre-fault section and the fault inception, segment B indicates 
the fault, segment C indicates opening of the circuit-breaker, 
segment D indicates auto-reclosing of the circuit-breaker and 
system restore. 

Fig. 7 shows another result for the RED-phase voltage 
recording, sampled at a sampling frequency of 2.5 kHz [7], 
from the Eskom DFRs during a phase to ground fault. The 
WT uses ‘Daubechies 4’ [3] mother wavelet. 

 

 
 

Fig. 7.  Segmentation of the RED-Phase Voltage signal 
 

In Fig. 7, the original DFR recording for the voltage during 
the fault in the RED-Phase is shown in the top section, 
wavelet coefficients for this fault signal (in blue) and the 
universal threshold (in black, dashed) are shown in the middle 
section and the change time-instants computed using the 
threshold checking (middle section) followed by smoothing 
filtering is shown in the bottom section. It is to be noted that 
only the high-pass filter output of the QMF pair is shown, so 
the wavelet coefficients in the middle section indicate half of 
the total samples of the original signal. The time-instants of 
the changes in the signal characteristics in the lower plot in 
Fig. 7 indicate the different signal segments owing to different 
events during the fault, e.g., segment A indicates the pre-fault 
section and the fault inception, segment B indicates the fault, 
segment C indicates opening of the circuit-breaker, segment D 
indicates auto-reclosing of the circuit-breaker and system 
restore. 



A.  Comments on Application Results 
Following the discussion of the applied algorithms and the 

application results, the following comments can be cited.  
• The intended application is not meant for real-time 

analysis, so computation time is not a critical factor. 
However, the proposed algorithm for the abrupt 
change detection and signal segmentation took an 
average computation time of 0.431 seconds. An Intel® 
Celeron® 1.9 GHz computer was used for all the 
application tests using MATLAB® [11]. It is to be 
noted that the complete automatic disturbance 
recognition and analysis tasks have to be performed 
within five minutes of the acquiring of the fault 
signals, abrupt change detection and segmentation 
being the first step. 

• The proposed algorithm using the wavelet transform is 
considerably faster and more robust compared to the 
traditional peak value detection and superimposed 
current quantities algorithms [7]. Also, this algorithm  
based on the wavelet transform and threshold method 
facilitates further signal processing and analysis in the 
subsequent stages of automatic disturbance recognition 
and analysis, focusing on the different segments and 
helping to determine quickly parameters like duration 
of the fault etc directly from the abrupt change 
detection based segmentation itself. This cannot be 
done using the traditional peak value detection and 
superimposed current quantities algorithms [7]. 

• Instead of Fourier transform, Wavelet transform is 
particularly suitable for the power system disturbance 
and fault signals which may not be periodic and may 
contain both sinusoidal and impulse components. 

• Wavelet coefficients are greatly adaptive to the fault 
signal pattern variations. 

• Wavelet transform provides a local representation 
(both in time and frequency) of a given signal, thus the 
necessary time-frequency resolution for the power 
system fault analysis can be achieved. This is not 
possible with the traditional Fourier transform which 
provides a global representation of a signal. 

VII.  CONCLUSIONS 
We have presented in this paper the wavelet transform used 

for detecting the abrupt changes in the signals recorded during 
disturbances in the transmission network of South Africa. 
Power system disturbance and fault signals may not be 
periodic and may contain both sinusoidal and impulse 
components. So, we propose the use of wavelet transform, 
particularly the dyadic-orthonormal wavelet transform to 
decompose the original fault signal into the smoothed and 
detailed version in terms of the wavelet coefficients using the 
multiresolution signal decomposition technique. Then we 
make a progressive search on that wavelet scale for the largest 
wavelet coefficients. The change time-instants can be 

estimated by the time-instants when the  wavelet coefficients 
exceed a given threshold (which is equal to the ‘universal 
threshold’ of Donoho and Johnstone [2] to a first order of 
approximation). This is followed by smoothing operation. We 
have been mainly interested in estimating the change time-
instants and the results obtained from the MATLAB® 
implementation are quite good. So, the use of the dyadic-
orthonormal wavelet transform to transform the fault signals 
into the smoothed and detailed version, followed by the 
threshold checking is quite effective in detecting the abrupt 
changes in the signals originating from power system faults to 
segment them into the event-specific sections. 
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