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Abstract— A single real transformation matrix is applied
to typical symmetrical systems with three-phase double-
circuit transmission lines or two parallel three-phase
double-circuit transmission lines. The objective
is to determine the characteristic matrices (Z and Y)
in the mode domain. The proposed analyses
are based on eigenvector and eigenvalue studies, using
linear combinations of Clarke matrix elements. Using the
proposed extended techniques, Z and Y diagonal matrices
are obtained for transposed cases of three-phase double-
circuit line systems (a six order transformation matrix).
In this case, the error comparisons between the exact
eigenvalues and the results of a single real transformation
matrix are presented when the non-transposed line is
considered.

Index Terms-Clarke matrix, eigenvector, eigenvalue, fre-
quency, mode domain transformation, transmission lines.

I. I NTRODUCTION

T RADITIONALLY, when the line impedance matrix
(Z) and the line admittance matrix (Y) are con-

sidered frequency dependent, the diagonal YZ product
determination in mode domain is a problem that re-
quires working with frequency dependent transformation
matrices.The use of exact eigenvectors (TV and TI

matrices) leads to slow digital transient simulations. In
phase domain line models, the transformation matrices
are not needed, but the simulations can also be slow
because of the phase domain numerical manipulations.1
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Therefore, an alternative is a single real transformation
matrix application [1, 2]. The purpose of this paper is
to replace the matricesTV andTI , and the eigenvectors
of ZY and YZ, by a single real transformation matrix.
For ideally transposed cases, considering a three-phase
double-circuit line, the Z, Y, YZ product and ZY product
matrices are transformed into diagonal matrices with
this single real transformation matrix application. The
proposed development uses a single homopolar mode
reference for all phase conductors of the system, leading
to exact eigenvalues for the three-phase double-circuit
line cases. For two parallel three-phase double-circuit
line cases, the most non-diagonal elements are zero. Con-
sidering a real three-phase double-circuit line case, the
comparison between the exact eigenvalues and the results
of the single real transformation matrix is represented.
The errors are smaller than 2% (in modulus) and for
some modes, the error is close to zero.

II. MATHEMATICAL EQUATIONS

After the proper determination of the electrical
parameters (longitudinal impedance and transversal ad-
mittance values) in phase domain, the proposed method-
ology can be performed to mode analysis and electro-
magnetic transient simulations. In this paper, only mode
analyses are performed. So, the relationships between
transversal voltagesuF and the longitudinal currentsiF
can be expressed by the following equations:

−duF

dx
= Z.iF (1)

−diF
dx

= Y.uF (2)

Applying the eigenvector and eigenvalue analyses for
YZ and ZY product matrices, theλ diagonal eigenvalue
matrix and the eigenvector matrices are determined. The
eigenvector matrices,TV and TI , correspond to Z and
Y matrices, respectively. TheTV and TI matrices are
related to equations 1 and 2, based on the following
equation:
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λ = TV .Z.Y.T−1
V = TI .Y.Z.T−1

I (3)

If the TV and TI transformation matrices are used,
equations (1) and (2) can be obtained in mode
domain. The per unit length longitudinal impedance
matrix (ZMD) and transversal admittance matrix (YMD)
are:

ZMD = TV .Z.T−1
I (4)

YMD = TI .Y.T−1
V (5)

In general, these frequency dependent transformation
matrices are different and have complex elements. Using
the proposed methodology, the transformation matrices
are changed into a single real transformation matrix
(TSR). The (TSR) matrix is determined from linear
combinations of Clarke matrix elements[3,4,5,6]. So,
equation (3) is changed into the following:

λSR = TSR.Y.Z.T−1
SR = TSR.Z.Y.T−1

SR (6)

Considering a single homopolar mode reference, the
λSR matrix is equal to an exact eigenvalue matrix (λ)[7]
as well asTV andTI being eigenvector matrices[8,9,10]
for a transposed three-phase double-circuit line. This
single homopolar mode reference is the link between the
two three-phase circuits of the system. With this tech-
nique , a transformation matrix (TSR) is obtained which
has interesting characteristics: single, real, frequency
independent, line parameter independent and identical
to voltages and currents. In this paper, the proposed
single homopolar mode reference is extended to a system
with two parallel three-phase double-circuit lines and its
results are analyzed.

III. THREE-PHASE DOUBLE-CIRCUIT LINE
SYSTEMS

For this line type, an ideal transposition is assumed.
Each three-phase circuit is ideally transposed, generating
only one coupling impedance within a circuit and only
one coupling impedance among the circuits. The generic
structure and the average coupling impedance values of
this line transposition type are shown in Figure 1. The
average self phase impedance value is represented by
A. The average coupling impedances are represented
by R, within a circuit, and P, among the circuits. This
transposition type can be considered an idealization of
common three-phase double-circuit lines.
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Fig. 1. Coupling impedances for operational transposition

For this case, the structure of the impedance matrix is
shown in equation 6. The Y matrix has a similar structure
to that of Z.

ZDL =




A R R P P P
R A R P P P
R R A P P P
P P P A R R
P P P R A R
P P P R R A




(7)

The result determined through equation (6) is
a diagonal matrix and the matrix elements are the
exact eigenvalues, if theTSR transformation matrix is
described by:

TSR =




− 1√
6

2√
6

− 1√
6

0 0 0
1√
2

0 − 1√
2

0 0 0
1√
6

1√
6

1√
6

− 1√
6

− 1√
6

− 1√
6

1√
6

1√
6

1√
6

1√
6

1√
6

1√
6

0 0 0 1√
2

0 − 1√
2

0 0 0 − 1√
6

2√
6

− 1√
6




(8)

The ZMDDL is calculated as:

ZMDDL = TSR.ZDL.T−1
SR (9)

The λSR matrix can be described by:

λSR =




K1 0 0 0 0 0
0 K1 0 0 0 0
0 0 K2 0 0 0
0 0 0 K3 0 0
0 0 0 0 K1 0
0 0 0 0 0 K1




(10)

where the values defined forK1, K2 and K3 below
are represented as:K1 = a − r ; K2 = a + 2r − 3p ;
K3 = a + 2r + 3p.

In the previous matrix, there are four equal modes and
two different modes. Therefore, it is possible to obtain
exact modes for three-phase double-circuit transposed
lines applying a single homopolar mode reference. This
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reference is identified as the fourth row of theTSR

matrix where the value elements are equal. The single
homopolar mode reference connects the two three-phase
circuits of the considered system, creating a diagonal
matrix for transposed cases.

IV. EIGENVALUE ANALYSES FOR
THREE-PHASE DOUBLE-CIRCUIT LINE

The next figures show a new approach to the calcula-
tion of transients on transmission lines with frequency-
dependent parameters. In Figure 2 it is observed that
the relative differences between the values in the exact
modes and quasi-modes are not greater than2%.

For the calculations of these values the following
relation is used:

ε =
λ− λSR

λ
.100 (11)

Where λSR is quasi-mode matrix elements andλ are
exact eigenvalue matrix elements.
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Fig. 2. Relative differences between the values in the exact modes
and quasi-modes
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Fig. 3. Comparison between the modules in the exact modes and
quasi-modes

10
1

10
2

10
3

10
4

10
5

10
6

−10
−2

−10
−4

−10
−6

−10
−8

−10
−10

−10
−12

−10
−14

Frequency (Hz)

 R
ea

l (
%

)

Comparison between exact modes and quasi−modes

exact modes 

quasi−modes

Fig. 4. Comparison between the real part in the exact modes and
quasi-modes
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V. TWO PARALLEL THREE-PHASE
DOUBLE-CIRCUIT LINES

A system with two parallel three-phase circuit-double
lines is shown in Figure below.

t t t t
1 3 4 6

t t t t
7 9 10 12

t t
2 5

t t
8 11

Fig. 6. Schematic representation of system two parallel three-phase

The system shown in Figure is performed with some
ideal conditions. The assumptions are: the distances
between the lines are equal and each three-phase circuit
is ideally transposed. Because of this, the average self
phase impedance value is represented by A. Within
a circuit, the coupling impedances are represented by
D. Considering the coupling impedances among the
adjacent circuits, the H symbol is used to represent these
values. The W and J symbols represent the coupling
impedances among the circuits in non-adjacent or in
extreme system positions, respectively. This system is
identified through theZTp matrix, shown in equation
12.




A D D H H H W W W J J J

D A D H H H W W W J J J

D D A H H H W W W J J J

H H H A D D H H H W W W

H H H D A D H H H W W W

H H H D D D H H H W W W

W W W H H H A D D H H H

W W W H H H D A D H H H

W W W H H H D D A H H H

J J J W W W H H H A D D

J J J W W W H H H D A D

J J J W W W H H H D D A




(12)

Using the single homopolar mode reference, theTSR

transformation matrix can be described by:




L1 M L1 0 0 0 0 0 0 0 0 0

N 0 N1 0 0 0 0 0 0 0 0 0

S S S S1 S1 S1 S S S S1 S1 S1

0 0 0 L1 M L1 0 0 0 0 0 0

0 0 0 L 0 L1 0 0 0 0 0 0

S1 S1 S1 D S S S1 S1 S1 S S S

0 0 0 0 0 0 L1 M L1 0 0 0

0 0 0 0 0 0 L 0 L1 0 0 0

S1 S1 S1 S1 S1 S1 S S S S S S

0 0 0 0 0 0 0 0 0 L1 M L1

0 0 0 0 0 0 0 0 0 N 0 N1

S S S S S S S S S S S S




(13)

The values of theTSR matrix elements are:

L =
1√
6
, L1 =

−1√
6
; M =

2√
6
; (14)

N =
1√
2
, N1 =

−1√
2
; S =

1√
12

, S1 =
−1√
12

; (15)

The single homopolar mode reference is determined by
the twelfth row where all elements have the same value.
This value leads to a unitary homopolar mode modulus.
The homopolar mode connects all phase conductors
in a single mode.

The ZMDTP is calculated as:

ZMDTP = TSR.ZTP .T−1
SR (16)

The λSR matrix can be described by:

λSR =




K6 0 0 0 0 0 0 0 0 0 0 0

0 K6 0 0 0 0 0 0 0 0 0 0

0 0 K0 0 0 K1 0 0 0 0 0 0

0 0 0 K6 0 0 0 0 0 0 0 0

0 0 0 0 K6 0 0 0 0 0 0 0

0 0 K1 0 0 K2 0 0 0 0 0 0

0 0 0 0 0 0 K6 0 0 0 0 0

0 0 0 0 0 0 0 K6 0 0 0 0

0 0 0 0 0 0 0 0 K3 0 0 K4

0 0 0 0 0 0 0 0 0 K6 0 0

0 0 0 0 0 0 0 0 0 0 K6 0

0 0 0 0 0 0 0 0 K4 0 0 K5




(17)

The λSR matrix elements correspond to theTSR

transformation matrix applied toY ZTP product. The
YTP structure is similar to that of theZTP one. The
values of theλSR matrix elements are:

K = a + 2d− 9h

2
+ 3w − 3j

2
(18)

K1 =
3(h− j)

2
(19)

K2 = a + 2d +
3h

2
− 3w − 3j

2
(20)

K3 = a + 2d +
9h

2
+ 3w +

3j

2
(21)

K4 = −3(h− j)
2

(22)

K5 = a + 2d− 3h

2
− 3w +

3j

2
(23)

K6 = a− d (24)

It is verified that theλSR matrix is symmetrical. Most
of the non-diagonal elements are zero and there are
eight equal modes. The other diagonal elements that
are non-exact modes can be called quasi-modes.
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The non-diagonal elements that are non-zero values
present structures composed of the subtraction of two
values(equations 18 and 24). So, these elements can
become non-significant when compared with the diag-
onal elements, depending on several line characteristics.
In future development, the error analyses for this case
will be performed, investigating what are the main line
characteristics which can minimize the non-zero non-
diagonal elements. Probably, the investigation will be
concentrated on the geometrical characteristics of the
line.

VI. CONCLUSIONS

With linear combinations of Clarke matrix elements,
the eigenvector and eigenvalue analyses are made, con-
sidering three-phase double-circuit and two parallel
three-phase double-circuit lines. The proposed meth-
odology applies a single homopolar mode reference,
determining single real transformation matrices for ana-
lyzed lines in this paper. This homopolar mode reference
connects all three-phase circuits of the analyzed systems.
The proposed methodology has been tested on systems
with three-phase double-circuit lines (a 6 order trans-
formation matrix) and two parallel three-phase double-
circuit lines (a 12 order transformation matrix). For
transposed three-phase double-circuit lines, exact modes
and diagonal matrices are obtained in mode domain.
In transposed cases of two parallel three-phase double-
circuit lines, exact modes are not obtained. Considering
this case and the non-transposed three-phase double-
circuit lines, in future development, error analyses must
be performed, investigating if the errors between exact
modes and quasi-modes are negligible. In this paper,
it is used only two types of line structures. It can be
considered special cases because of the symmetrical
characteristics of the line examples. These examples are
used to present the concept of a single homopolar mode
reference that connects all phase conductors of the line.
Basing on error analyses presented in this paper, the
future objective is to obtain a model without convolution
procedures where, probably, there are computer-time
savings. These future objectives will be related to the sin-
gle real transformation matrix and the single homopolar
reference applications. So, for future development, other
line structures will be checked.
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