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   Abstract-- In electrical power networks small oscillations 
appear from time to time. These oscillations concern the 
quantities determining the equilibrium point of the system, and 
following which, system stability and system behaviors are 
influenced. To improve system behaviors and dynamic stability it 
is necessary to minimize these transient states. The objective of 
our study is, first, showing the importance of good choice of state 
variables of a multimachine power system because controllability 
and observability of the system depend on this choice. On the 
other hand, we want to increase the damping of the small 
oscillation by adding of additional signals on excitation systems. 
The results of simulation approve the utility of the method used in 
this paper to choice the weighting matrices. These matrices are 
used to obtain the optimal control which minimizes a quadratic 
index. The problem of immeasurable states is noted but not 
discussed in detail. 
 

Keywords: Damping of small oscillations, linear optimal 
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I.  INTRODUCTION 

n this paper, the problem of small signal stability will be 
treated. The linear modeling in the state space of an 

electrical multimachine power system will be discussed. The 
optimal control method will be applied to improve the 
dynamic responses of the power system under small 
disturbances. The problem of the state observer will briefly be 
noted in the last section.  

II.  SMALL OSCILLATION AND STABILITY PROBLEM  

     Rotor angle stability is the ability of interconnected 
synchronous machines of a power system to remain in 
synchronism. The stability problem involves the study of the 
electromechanical oscillations inherent in power systems. 
Small-signal stability is the ability of the power system to 
maintain synchronism under small disturbances. Such 
disturbances occur continually on the system because of small 
variations in loads and generation. The disturbances are 
considered sufficiently small for linearization of system 
equations to be permissible for purpose of analysis.   
      In the literature, the authors interest in finding new 
approaches of control to improve the small-signal (dynamic) 
stability of power system. In this paper we will use the 
classical optimal control method but we will focalize on the 

                     
 
Presented at the International Conference on Power Systems 
Transients (IPST’07) in Lyon, France on June 4-7, 2007 
 

problem of choice of the state vector for good representation 
of power system. This is a small idea but it is very important 
because it influences the observability and the controllability 
of the system. 

III.  L INEAR MODELING OF MULTIMACHINE POWER SYSTEM 

     An electrical multimachine network is composed of several 
synchronous generators, transmission lines and loads. All 
elements and interactions between synchronous machines are 
taken into account in the state space linearized model. The 
operating point may be obtained by Newton-Raphson method 
for load flow study. 

A.  Load model 

Load is a passive admittance, and given by: 
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where LiLi QP , are the active and reactive load powers. iV is 

the voltage magnitude at the load node  (i ).  

B.  Transmission line model 

Transmission line is considered as constant series impedance  

C.  Synchronous generator model 

Synchronous machine is considered as a voltage behind a 
transient reactance.  

                   Gidiiqi IjXVE ⋅+= ''                                        (2) 

where: iV is the complex voltage at generator nodes, '
qiE is the 

voltage behind transient reactance'dijX , and GiI is the injected 

current at generator node (i ). 
Each synchronous machine is described by Park’s equations 
with neglect the resistance of the stator winding and the 
following from the voltage equations of stator 

• The transformer voltage terms, 0==
••

dq ψψ . 

• The effect of speed variation. 
In rotor equation damping winding effect is neglected. 
The reasons of the two first simplifications are discussed in 
[12]. Hence, Park’s model of synchronous machine becomes. 
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D.  Network model 

The network is represented by constant admittances and 
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reduced by eliminating all buses without generator. 
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admittance matrix of the network. It is the same matrix of 

)( LBUS YY + but after reorganization of its columns and rows. 

The final admittance matrix is  
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where '
dX  is the diagonal matrix of transient reactance of  the 

machines.  
 
    The objective, here, is obtaining the network under the 
following form (5). 
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The indices ( LG, ) represent the generator and load nodes. 

 
     The diagram, shown below in Fig. 1, represents the 
relationships between voltages and currents in a network.  
From Fig. 1 equation (6) can be written 
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Fig. 1. Voltages and currents diagram of a network 

 

To determine rotor angles of machines three reference axes 
may be used. Axis( )0=θ  is the reference axis to calculate the 

equilibrium state. ),( QD  is the common reference axis, it can 

be ( )11,qd or other axis.( )ii qd , is the individual reference axis 

of the machine( )i . 

E.  Excitation system Model 

The IEEE type 1 excitation system model is chosen and 
illustrated in Fig. 2.  

 
 
 
 
 
 
 
 

Fig.2. Excitation system  

The saturation effect is neglected. RT  is very small, 

so
sTR+1

1
can be neglected. 0== as sVsV because these 

voltages vary quickly compared to the other terms [1], [2], [3], 
[17]. Thus, after simplification discussed in [17] we have: 

)( tREF
FAE

A
FD

FAE

E
FD VV

KKT

K
E

KKT

K
sE −

+
+

+
−=           (7) 

F.  Equation of motion. 

 The swing equation for the machine )(i is given by: 
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where miT , eiT are the mechanical and electrical torque,iD  is 

the damping coefficient, iM is the mechanical starting time. 

iδ  is the torque angle, iω is the angular speed and bω is its 

value of base. For the electrical part, the effect of the salience 
is taken into account as shown in the following equations: 
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Terminal voltage equations of the ith machine: 

qiqidi IXV ⋅=   didiqiqi IXEV ⋅−= ''             (12) 

G.  Complete model of the ith machine in a multi-
machine power system  

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3.  One machine model in multimachine network 

Fig. 3. represents the ith machine model in the power system 
of m machines. The deviation of the mechanical torque is 
neglected, thus 0=∆ miT  [4], [10], [11], [12]. 
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From Fig. 3 we can write the state space model of our system 
in the following form. 
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In (13) the state variables are the deviations of equilibrium 
point. The principle of linearization is discussed in detail in 
[12]. The detailed linear modeling is discussed in  [1] to [4].  
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[ ]U = [ ]T
mUUU ,,, 21 L is the control vector. If the system is 

uncontrolled then this vector is zero. [1], [2], [3], and [18] 
based on [19] used the deviation of individual rotor angle 

iδ∆ as a state variable. Because the reference axis turns in 

synchronism with the rotor of an arbitrary chosen machine, 
they considered that the angle deviation of this machine Cδ∆  

is zero. Hence, (13) must be modified by eliminating of the 
state Cδ∆ from the left and right hand sides. We will not 

follow this approach for the following reasons: 
(i) By linearization we are interested in the deviation around 

the equilibrium point and not in the deviation with 
respect to the common reference of the system. 
Hence, Cδ∆ can not be zero. 

(ii)  If we follow the same approach of [19], this means that a 
perturbation on the speed of the machine considered as 
reference does not have an effect on other state variables. 
This is not physically logical! 

Taking into account Cδ∆ results in one of the eigenvalues 

equaling zero. This is natural because the relationship between 
speed and angle deviations. If one of eigenvalues of system is 
zero full system is uncontrollable and unobservable. To avoid 
this problem, we have chosen the deviation of the relative 
angle between all machines and the first machine as shown in 
(14).  

IV.  STABILIZER DESIGN BASED ON LQR APPROACH 

  Using optimal control, from [1] to [4] and [13], displaces 
eigenvalues of system towards the left of the imaginary axis in 
(real-imaginary) plan. This displacement increases the 
damping of system. Feedback gain is calculated to be 
realizable and to give a control respecting the capacities of 

machines. For a system( ) ( ) ( )tuBtxAtx ⋅+⋅=• , the optimal 

control is based on minimization of a performance index of 
quadratic form:   
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where )0,0( >≥ RQ  are diagonal matrices, the weighting 

matrix of state variable deviations and that of the control effort 
respectively. To find feedback gain we must calculate( )P  

where( )P is the solution of Riccati’s equation (16). 

01 =−⋅⋅⋅⋅+⋅−⋅− − QPBRBPAPPA TT                           (16) 

Feedback gain is given by PBRK T ⋅⋅= −1  and the control 
vector becomes xKu ⋅−= . This control is added to the 

excitation system as supplementary signal. The closed loop is a 

new system and described by( ) ( )txKBAtx ⋅⋅−=• ][ . For our 

study, the equation of the closed loop is given by (17).  
( ) ( ) [ ] [ ]refVBtXKBAtX ∆⋅+∆⋅⋅−=∆ • ][                                        (17) 

The question arises of how to decide the weighting matrix Q  

and R of the performance function (15). In [14] a method is 
developed to determine Q in conjunction with a left shift of 

the eigenvalues as far as the practical controller permit. In [15] 
it is possible to determineQ and R matrices as follows. 

A.  Choosing the Q matrix 

The importance of each state variable of a linear dynamic 
system may be related to its combined measure of 
controllability and observability, determined by transforming 
the system into an ordered balanced form [16], through the 

following transformation:           ( ) ( )txTtx b
1−=      

where T is balanced transformation matrix and bx is the state 

vector of the balanced form 
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where  11 ,, −− === CTCTBBTATA bbb                      (19) 

The controllability and observability gramians, denoted by 

cW and oW respectively, of the system are defined as follows: 
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For open loop stable system, these gramians satisfy the 
following Lyapunov equations: 

0=++ TT
cc BBAWAW  and 0=++ CCAWWA T

oo
T       (21) 

when the system is in a balanced form, its controllability cW  

and observability oW gramians are equal and diagonal, i.e. 

),,,,(diag 11 nmmoc WW σσσσ LL +=Σ==                        (22) 

where )1,,1(;01 −=≥≥ + niii Lσσ are called the Hankel 

singular values (HSVs), or second order modes of the system, 
and m is a number of most dominant (most controllable and 
observable) modes. Based in the above analysis, the choice of 
the Q matrix is made as follows: 

(i) The firstmstates of the balanced system are those states 
which are deemed to contribute most to the dynamical 
behavior of the system. Thus they should be weighted 
according to their contribution. 

(ii)  Ignore the last mn −  states by placing zero weighting on 
term. This is because these states are poorly controllable 
and/or observable, and therefore play a minor role in the 
dynamical behavior of the system. Thus it is impractical and 
useless to expend energy, which has to be very high, on these 
states. For calculate theQ matrix:  

)0,0,0,/,,/,1(diag 121 LL mbQ σσσσ=   and TQTQ b
*=  (23) 

where *T is the conjugate transpose of T . 

B.  Choosing theR  matrix 

The choice of the control weighting matrixR is accomplished 



by using the following procedure. 
(i) Partition the system as follows: 
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where nI is the identity matrix of order n . 

(ii)   Consider the ith single input multioutput systems: 

ritxItytubtxAtx nrr ,,2,1),()(),()()( L==+=
•

         (25) 

(iii)  Transform the ith single input multioutput systems into 
its respective balanced form. 

(iv) Calculate the contribution of the ith control input iω as: 

( )ii tr Σ=ω , where oicii WW ==Σ , cW and oW are the 

controllability and observability gramians corresponding to the 
ith control input. 

(v) From the R matrix as 
)/,,/,/,1( 11312 ωωωωωωγ rR L=                                     (26) 

whereγ is a positive scalar constant that determines the 

tightness of the control action. Normally, this should be set 
to 11 /σωγ = . 

If, however, there are practical limitations which restrict the 
amount of control energy to be injected into the system, then 
γ should be chosen as 11 /σωγ > . On other hand, if more 

emphasis is to be placed on the closed loop state performance, 
then γ should be chosen as 11 /σωγ < .  

V.  NUMERICAL APPLICATION 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4. Simple network 
 

TABLE I 
DATA OF MACHINES AND EXCITATION  SYSTEMS 

 M (s) D  qX (pu) '
dX (pu) dX (pu) 

G1 9.26 2.5 0.57 0.2 1.02 
G2 4.61 6 1.66 0.32 1.68 
G3 4.61 6 1.66 0.32 1.68 

 

FK  

 
FT (s) EK  

 
ET (s) '

0dT (s) AK  

 
AT (s) 

0.05 0 1 0 7.76 50 0.02 
0.05 0 1 0 4 50 0.02 
0.05 0 1 0 4 50 0.02 

VI.  RESULTS  OF SIMULATION  

A.  Without control 

  After having the state space model of this system as shown 
in (13), the eigenvalues of the state matrix A are calculated 
without control. We also have calculated the eigenvalues of 
the system with optimal control from (17).  
 

TABLE II 
SYSTEM EIGENVALUES   

1046.116956.0 j±−  9554.84776.0 j±−  8842.13899.0 j±−  

0000.0  6803.0−  8577.04989.0 j±−  

6217.05568.0 j±−  ×  ×  

     TABLE III 
SYSTEM EIGENVALUES  

2700.0−  0446.117150.0 j±−  4763.66946.0 j±−  

8532.13547.0 j±−  8473.05068.0 j±−  6206.05548.0 j±−  

     TABLE IV 
SYSTEM EIGENVALUES  

1046.116956.0 j±−  9554.84776.0 j±−  8842.13899.0 j±−  

6803.0−  6217.05568.0 j±−  8577.04989.0 j±−  

    TABLE V 
SYSTEM EIGENVALUES  

6142.110042.2 j±−  7554.90975.2 j±−  2340.43794.3 j±−  

9303.33994.6 j±−  4038.36818.5 j±−  5338.5−  

      
Tables II, III, and IV show the eigenvalues of the system 
without control. Table V shows those of the system with 
optimal control. The system in case II has iδ∆ as state 

variables as detailed in [4]. We remark the existence of zero as 
pole of the system. The system in this representation is 
partially controllable and observable. In case III, we follow the 
approach discussed in [19] deleting the first row and column in 
the state matrix. The eigenvalues have changed, hence, the 
dynamic responses of the state variables of the system change.  
In case IV, we take )( 1δδ −∆ i as state variables as in (14), the 

eigenvalues of the initial system did not change but the zero 
disappeared. With this representation, the system is 
autonomous from the common reference. It is controllable and 
observable. 

B.  With optimal control 

      The system in case V is controlled. With optimal control 
the eigenvalues have displaced as shown in table V. Thus, the 
controlled system has become less oscillating, and the return to 
the equilibrium point is faster than the case without control. 
The values of weighting matrices according (23) and (26) are 
calculated and taken as follows: 

0,0,0] 120, 200, 50, 150720, 161310, 157600, 170, 200,[ diag=Q

2.1016] 2.1199, 2.2465,[ diag=R . 

     To show the dynamic responses of the state variables, we 
have simulated at moment 0 (s) a disturbance of amplitude -0.1 
(pu) for 200 (ms) in the reference voltage REFV∆ of the 2th 

machine.  
 
The following figures from 5 to 12 show that the system is 
stable, the state variables return to their initial states after 10 
(s). With optimal control this time is reduced at 3 (s), and the 
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state amplitudes are considerably smaller than those without 
control. In addition, the high frequency components of 
transient responses are filtered, and the curves are smoothed. 
Consequently, these figures and the Table V confirm the 
efficacy of the approach discussed in section IV based on [15], 
and concerning the choice of weighting matrices Q andR .   

 
Fig. 5. Rotor angle deviation without control 

 

 
 

Fig. 6. Rotor angle deviation with optimal control 
 

For the angular speed deviations, we note that all machines 
have the same curves. It is physically logical because if one 
machine accelerates or decelerates the other machines also 
must accelerate or decelerate to remain in synchronism.  
 

 
Fig. 7.  Angular speed deviation without control   

 

 
Fig. 8.  Angular speed deviation with optimal control   

 
Fig. 9.  Voltage deviation without control   

 

 
Fig. 10.  Voltage deviation with optimal control   

 
Fig. 11.  Voltage deviation without control   

 
Fig. 12.  Voltage deviation with optimal control   

 

In this paper we suppose that all state variables are accessible 
or measurable, but, this is not correct because the rotor angle 
and the internal voltage behind the transient reactance are not 
accessible. Hence, it is necessary to use a state observer to 
obtain the lacking state variables. In addition, it is possible to 
estimate the control signal if we have the feedback gain of the 
closed loop of the system.  Fig. 13. shows the block diagram of 
Luenberger observer of reduced order. It estimates a linear 
function as the control signal produced by optimal control 
method. The observer is a dynamical system, thus, it will 
modify the initial system dynamic. On other hand, the observer 
dynamic is influenced by the choice of its gain. This gain fixes 
the eigenvalues of the observer. They are those of matrixD .     



 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13.  State observer   

)()()()( tyEtuHtzDtz ⋅+⋅+⋅=
•

and )()()( tyVtzPtw ⋅+⋅=  

To have a good operation of the complete system, we must 
find a compromise between the choice of the gain of the 
observer and that of the optimal control. It may be one of 
perspectives of the work presented in this paper.  

VII.  CONCLUSION 

In this paper the linear modeling of multimachine power 
system briefly was discussed. The comparison between two 
models of multimachine power system based on the different 
choices of state variables showed a difference in the 
eigenvalues of these models. To improve the dynamic stability 
of power system, acting on the excitation systems of the 
synchronous machines by an optimal control was efficient. The 
optimal control was based on the minimization of quadratic 
function. The choice of weighting matrices was simple and 
practical following the discussed approach in section IV. A 
state variables observer is indispensable to estimate the 
immeasurable state variables. This problem was noted but not 
detailed here; and this may be a perspective for our study.     
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