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Abstract-- In electrical power networks small oscillations
appear from time to time. These oscillations concern the
quantities determining the equilibrium point of the system, and
following which, system stability and system behaviors are
influenced. To improve system behaviors and dynamic stability it
is necessary to minimize these transient states. The objective of
our study is, first, showing the importance of good choice of state
variables of a multimachine power system because controllability
and observability of the system depend on this choice. On the
other hand, we want to increase the damping of the small
oscillation by adding of additional signals on excitation systems.
The results of simulation approve the utility of the method used in
this paper to choice the weighting matrices. These matrices are
used to obtain the optimal control which minimizes a quadratic
index. The problem of immeasurable states is noted but not
discussed in detail.

Keywords: Damping of small oscillations, linear optimal
control, and dynamic stability.

. INTRODUCTION

n this paper, the problem of small signal stabiityl be

treated. The linear modeling in the state spaceamf
electrical multimachine power system will be disat The
optimal control method will be applied to improvéet
dynamic
disturbances. The problem of the state observétwéfly be
noted in the last section.

Il. SMALL OSCILLATION AND STABILITY PROBLEM
Rotor angle stability is the ability of intemnected

problem of choice of the state vector for good espntation
of power system. This is a small idea but it isyvienportant
because it influences the observability and thetrotiability

of the system.

An electrical multimachine network is composddeveral
synchronous generators, transmission lines andsload
elements and interactions between synchronous neglare
taken into account in the state space linearizededndrhe
operating point may be obtained by Newton-Raphsethad
for load flow study.

A. Load model

Load is a passive admittance, and given by:

— P, -jQ,
y, =-L 1Qui

M

where P, Q; are the active and reactive load powevg.is

L INEAR MODELING OFMULTIMACHINE POWER SYSTEM

1)

the voltage magnitude at the load node). (

B. Transmission line model
Transmission line is considered as constant senigedance

C. Synchronous generator model
Synchronous machine is considered as a voltagendbehi

responses of the power system under smglnsient reactance.

E;u =V + Xg Og; (2

Where:\z is the complex voltage at generator node{ﬁ,is the

voltage behind transient reactangg , andGis the injected

synchronous machines of a power system to remain diirrent at generator node)(

synchronism. The stability problem involves thedstwf the
electromechanical oscillations inherent in powerstams.

Each synchronous machine is described by Park’sitems
with neglect the resistance of the stator windingl ahe

Small-signal stability is the ability of the powsystem to following from the voltage equations of stator
h

maintain  synchronism under small disturbances.
disturbances occur continually on the system becatismall
variations in loads and generation. The disturbaneee
considered sufficiently small for linearization afystem
equations to be permissible for purpose of analysis

In the literature, the authors interest in findimgw
approaches of control to improve the small-sigrlginamic)
stability of power system. In this paper we willeushe
classical optimal control method but we will foealion the
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+ The transformer voltage termg, =¢/y =0.

The effect of speed variation.
In rotor equation damping winding effect is negbett
The reasons of the two first simplifications arscdissed in
[12]. Hence, Park’s model of synchronous machirmbes.

v
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vy =~y Vg =ty Ve =1 (i )+ 3

D. Network model
The network is represented by constant admittameces



reduced by eliminating all buses without generator.

Lo Y v _

Yred =Y, =Y, Ya I¥; where:| . _|is the reorganized
Y; Y,

admittance matrix of the network. It is the sametrixeof

(YBus +YL) but after reorganization of its columns and rows.

[Foe ]

whereX is the diagonal matrix of transient reactancetiué
machines.

1 .
Yred + jXq4

The final admittance matrix iS?{ 4)

The objective, here, is obtaining the networider the

Vt

supplementary

signal

Fig.2. Excitation system
The saturation effect is neglectedly

1

is very small,

SO

can be neglected.sV, =sV, =0because these
1+Tgs

voltages vary quickly compared to the other terijs[p], [3],
[17]. Thus, after simplificatiodiscussed in [17] we have

following form (5).

KE KA
SErp =— + -V 7
- o B . . . EFD TE+KAKF FD TE+KAK|: (VREF t) ( )
ic)= {Freo | |
IG Yl YZ G . .
ot S I 1] g where:[_] F.] — (5) F. Equation of motion.
Il 1Y Yaf [M le =Yt EEEQ} The swing equation for the machifi¢ is given by:
The indices G, L) represent the generator and load nodes. * 1 .
G L)rep g w :W(Tmi_Tei_Di [y) in (pu/s) (8)
I
The diagram, shown below in Fig. 1, represetits - ]
relationships between voltages and currents irhaank. 3 =ap(w -1) in (elecrad/s) (9)

where T, T; are the mechanical and electrical torge,is
the damping coefficientM; is the mechanical starting time.

From Fig. 1 equation (6) can be written

L0 - j(Xqi = X('ji)EI:i (6) 4 is the torque angleq is the angular speed and) is its

value of base. For the electrical part, the eftddhe salience

is taken into account as shown in the followingamns:
Tei URe(; V) =1 [E;u +lg (xqi - x;ii)Ddi (10)
. g 1 . ,
S, By =— (EFDi = _(Xdi - Xdi)Ddi) (11)
° doi
" '-. Terminal voltage equations of titt machine:
'-. Vi = X Ogi Vi = Egi = Xgi Qi (12)
G. Complete model of the ith machine in a multi-
med__y machine power system
' _ ~ A, W
{ - Angleé; Fxtat, [ 1) AW (2md ) AS,
il > Axed, = B+D,
_______ : “; | 4 > +¥ + M. 5+ D] Ls J
.-A;e:éfZé;d) """""""""""""

Fig. 1. Voltages and currents diagram of a network

To determine rotor angles of machines three refereaxes
may be used. Ax(#: 0) is the reference axis to calculate the

equilibrium state(D, Q) is the common reference axis, it can
be (dl,ql)or other axis(di,qi )is the individual reference axis
of the machiné).

Fig. 3. One machine model in multimachine network
Fig. 3. represents th¢h machine model in the power system
of m machines. The deviation of the mechanical torque i

neglected, thud\T,,; =0 [4], [10], [11], [12].

E. Excitation system Model

ThelEEE type 1 excitation system model is chosen and
illustrated in Fig. 2.



From Fig. 3 we can write the state space modelofsgstem
in the following form.

M:[A1¢Ax1+[slm1+[slcﬁavref]

In (13) the state variables are the deviations gpfildrium
point. The principle of linearization is discussieddetail in
[12]. The detailed linear modeling is discussedihto [4].
[AX] =188, - &), B85 = 8.+ B(3y = 61), A, Ay, Dey,

AE AE;IZH“AE;]mv DEppy, AEppp, - AEppn]  (14)

(13)

qls

[U]:[Ul,Uz,m ,Um]T is the control vector. If the system is

uncontrolled then this vector is zero. [1], [2]],[2nd [18]
based on [19] used the deviation of individual roémgle
A, as a state variable. Because the reference axis tor

synchronism with the rotor of an arbitrary choseachine,
they considered that the angle deviation of thighireAd.

is zero. Hence, (13) must be modified by elimirgatof the

excitation system as supplementary signal. Thesdidsop is a
new system and described ¥\t) =[A- B K] x(t). For our
study, the equation of the closed loop is giverily).

AX® (t)=[A-BIK]@X(t)+[B] Eﬁav,ef] 17)
The question arises of how to decide the weightiagrix Q
and R of the performance function (15). In [14] a methisd
developed to determin® in conjunction with a left shift of
the eigenvalues as far as the practical contrpbemit. In [15]

it is possible to determir@and R matrices as follows.

A. Choosing the&) matrix

The importance of each state variable of a linearathic
system may be related to its combined measure
controllability and observability, determined byarisforming
the system into an ordered balanced form [16], uhinothe

following transformation: x(t) =T % (t)

of

state Ad. from the left and right hand sides. We will notvhere T is balanced transformation matrix angis the state

follow this approach for the following reasons:

() By linearization we are interested in the deviatmound ., t) = t) + Bult
the equilibrium point and not in the deviation withxb() Ao (t) + Byu(h)

vector of the balanced form

(18)

respect to the common reference of the systerdo(t) =CoX%(t)

HenceAd. can not be zero.
If we follow the same approach of [19], this me#rest a

(i)

where A =TAT?, B,=TB, C,=CT™* (19)
The controllability and observability gramians, ded by

perturbation on the speed of the machine considasedW, and W, respectively, of the system are defined as follows:

reference does not have an effect on other staizbles.
This is not physically logical!

Taking into accoumd. results in one of the eigenvalues

equaling zero. This is natural because the relstipnbetween
speed and angle deviations. If one of eigenvalfisysiem is
zero full system is uncontrollable and unobservabte avoid
this problem, we have chosen the deviation of #lative
angle between all machines and the first machinghawn in
(14).

IV. STABILIZER DESIGN BASED ONLQR APPROACH

Using optimal control, from [1] to [4] and [13], ffilaces
eigenvalues of system towards the left of the imagi axis in
(real-imaginary) plan. This displacement increast®

damping of system. Feedback gain is calculated ¢o {,

realizable and to give a control respecting theacties of
machines. For a systexn(t)= AX(t)+B(t), the optimal

control is based on minimization of a performancdei of
quadratic form:

J= % I [xT () XM +u' ()[R m(t)] et (15)
0

W= [eABB e tdt
0

For open loop stable system, these gramians satisfy
following Lyapunov equations:

AW, +W.A" + BB =0 and ATW, +W,A+C"C=0  (21)
when the system is in a balanced form, its coratbality W,
and observabilityy, gramians are equal and diagagna.

Wc :Wo :z:diaqa-lv""am’am+1""an) (22)
where g, 20;,,20; (i=1---,n-1) are called theHankel
singular values (HSVs), or second order modes eftlstem,
and mis a number of most dominant (most controllable and
observable) modes. Based in the above analysighibiee of

e Q matrix is made as follows:

(i) The firstmstates of the balanced system are those states
which are deemed to contribute most to the dyndmica
behavior of the system. Thus they should be weighte
according to their contribution.

(i) lgnore the lasin—m states by placing zero weighting on

term. This is because these states are poorly ailatiie
and/or observable, and therefore play a minor iolehe

. W j eNtcTeeMdt (20)
0

where (Q=0,R>0) are diagonal matrices, the weightinglynamical behavior of the system. Thus it is impcat and

matrix of state variable deviations and that ofd¢hatrol effort
respectively. To find feedback gain we must calmila)

Where(P)is the solution of Riccati’s equation (16).
-ATP-PIA+PBIRB'P-Q=0 (16)
Feedback gain is given ty=R™ (BT [P and the control

useless to expend energy, which has to be very bighhese
states. For calculate tigematrix:

Q, =diagl,0,/0,,--,0,/0,,,0,0,--0) andQ=T Q,T (23)
where T  is the conjugate transpose bf

B. Choosing th& matrix

vector becomes=-K[x. This control is added to thethe choice of the control weighting matRis accomplished



by using the following procedure.
(i) Partition the system as follows:

VI. RESULTS OFSIMULATION

A. Without control

After having the state space model of this systershawn
in (13), the eigenvalues of the state matfvare calculated
without control. We also have calculated the eigdumes of
the system with optimal control from (17).

. r
X(t) = Ax(®)+ Y bu (1), y) =1, () (24)
i=1
where |, is the identity matrix of orden.
(i) Consider théth single input multioutput systems:
X(t) = AXO+BU, (O, YO =1,xO), i=12-r  (25)

(iii) Transform theth single input multioutput systems into
its respective balanced form.
(iv) Calculate the contribution of thigh control inputey as:

a :tr(Zi), wherex; =W, =W,;, W,and W,are the
controllability and observability gramians corresding to the

ith control input.
(v) From theR matrix as

R=yQaw/w, vyl w, - g lawy) (26)
whereyis a positive scalar constant that determines the
tightness of the control action. Normally, this glibbe set
toy=w/o;.

If, however, there are practical limitations whigdstrict the
amount of control energy to be injected into thstey, then

TABLE II
SYSTEM EIGENVALUES
—0.6956+ j11.1046 | -0.4776+ 89554 | —0.3899+ j1.8842
0.0000 -0.6803 -0.4989+ j0.8577
-0.5568+ j0.6217 X X
TABLEII

SYSTEM EIGENVALUES

-0.2700

—-0.7150+ j11.0446

-0.6946+ |6.4763

-0.3547+ j1.8532

-0.5068+ j0.8473

-0.5548+ j0.6206

TABLEIV
SYSTEM EIGENVALUES

—-0.6956+ j11.1046

-04776+ [8.9554

-0.3899+ j1.8842

-0.6803

-0.5568+ j0.6217

-0.4989+ j0.8577

TABLEV
SYSTEM EIGENVALUES

—-2.0042+ j116142

-2.0975+ 9.7554

—-3.3794+ j4.2340

yshould be chosen @s>w /0o;. On other hand, if more -6.3994+ j39303 | -5681&* j34038 -55338
emphasis is to be placed on the closed loop stafermance,
Tables I, Ill, and IV show the eigenvalues of thgstem

then y should be chosen g< ¢y / 73 .

2,,= 005+ 020

2,,= 010+ 020

V. NUMERICAL APPLICATION

Ps; = 05560

Qg =0.0678

V=1

4 =0(deg)
1

2,5 = 008+ 030

3

Z,, = 005+ 025

2,5 =010+ 030

Z,,= 012+ 026

Ps3 =06

Qg3 =07

V, =10298

3, =-24293(deg)

Z3 = 002+ j 010

Pos =06
Ps, =09 Qps =-05
Qg2 =07 V, = 09553
v, 210202 2 5, =-37357(deg)
5, =-14496deg) Z,, = 007+ j 020 l
2,,= 005+ 010 (R.Q) Feo= 01001030
Py Z,5= 020+ 040 Pog =08
Wegaon 4 6 w=aams
&8, =-27731deg) l l 9 = ~46467deg)
(7. Q) (7. Q)
Fig.4. Simple network
TABLE |
DATA OF MACHINES AND EXCITATION SYSTEMS
M (s) D Xq®u) | X4@u) | XqPw

Gl 9.26 2.5 0.57 0.2 1.02

G2 4.61 6 1.66 0.32 1.68

G3 4.61 6 1.66 0.32 1.68

Ke Tes) | Kg Te (s) T(; 0 | Ka Ta(s)

0.05 0 1 0 7.76 50 0.02

0.05 0 1 0 4 50 0.02

0.05 0 1 0 4 50 0.02

without control. Table V shows those of the systaith
optimal control. The system in case Il hdsj as state

variables as detailed in [4]. We remark the existeof zero as
pole of the system. The system in this represemtats
partially controllable and observable. In casewi, follow the
approach discussed in [19] deleting the first rom aolumn in
the state matrix. The eigenvalues have changed;ehdahe
dynamic responses of the state variables of thersyshange.

In case IV, we takA(J, — J;) as state variables as in (14), the

eigenvalues of the initial system did not changetha zero
disappeared. With this representation, the systesn i
autonomous from the common reference. It is colabtd and
observable.

B. With optimal control

The system in case V is controlled. With wyati control
the eigenvalues have displaced as shown in tablenhus, the
controlled system has become less oscillating tla@deturn to
the equilibrium point is faster than the case withoontrol.
The values of weighting matrices according (23) €28) are
calculated and taken as follows:

Q =diag[200,170,15760016131015072050,200,120,0,0,0]

R = diag[2.24652.11992.1016].

To show the dynamic responses of the statehlas, we
have simulated at moment O (s) a disturbance ofiardp -0.1
(pu) for 200 (ms) in the reference voltad®/ge. of the 2th

machine.

The following figures from 5 to 12 show that thestgm is
stable, the state variables return to their ingi@tes after 10
(s). With optimal control this time is reduced afs3, and the



state amplitudes are considerably smaller thanetlaghout
control. In addition, the high frequency componermf

transient responses are filtered, and the curnesmaoothed.

Consequently, these figures and the Table V confine

efficacy of the approach discussed in section I$eblzon [15],

and concerning the choice of weighting matri€¢zandR .
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Fig. 6. Rotor angle deviation with optimal control

For the angular speed deviations, we note thamalthines
have the same curves. It is physically logical biseaif one
machine accelerates or decelerates the other neaclalso

must accelerate or decelerate to remain in syn&mon

(Pu)

Angular speed deviation

Time (s)
Fig. 7. Angular speed deviation without control
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Fig. 8. Angular speed deviation with optimal cohtr
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Fig. 9. Voltage deviation without control
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Fig. 11. Voltage deviation without control
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Fig. 12. Voltage deviation with optimal control

25 3

In this paper we suppose that all state variablesaecessible
or measurable, but, this is not correct becausedtoe angle
and the internal voltage behind the transient ezaet are not
accessible. Hence, it is necessary to use a shsene@r to
obtain the lacking state variables. In additiorisipossible to
estimate the control signal if we have the feedlaik of the
closed loop of the system. Fig. 13. shows thekbtbagram of
Luenbergerobserver of reduced order. It estimates a linear
function as the control signal produced by optirahtrol
method. The observer is a dynamical system, thusyill
modify the initial system dynamic. On other hara dbserver
dynamic is influenced by the choice of its gainisigain fixes
the eigenvalues of the observer. They are thoseatrixD .



Observer of linear function w(t) = K [X(t)

y(t)

consien __u(t) x= AX+B

+ y=CIx

Process

Fig. 13. State observer

z(t) = D z(t) + H du(t) + E Oy(t) and w(t) = P z(t) +V Oy(t)
To have a good operation of the complete systemmust
find a compromise between the choice of the gainthef
observer and that of the optimal control. It may dme of
perspectives of the work presented in this paper.

VII.

In this paper the linear modeling of multimachinewgr
system briefly was discussed. The comparison betviee
models of multimachine power system based on tffereit
choices of state variables showed a difference he
eigenvalues of these models. To improve the dynatalaility
of power system, acting on the excitation systerhghe
synchronous machines by an optimal control wasiefit. The
optimal control was based on the minimization ofdpatic
function. The choice of weighting matrices was denpnd
practical following the discussed approach in sectiv. A
state variables observer is indispensable to etinthe
immeasurable state variables. This problem wasdniote not
detailed here; and this may be a perspective fostudly.

CONCLUSION
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