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 Abstract-- This paper introduces three different procedures 

for improvements in the accuracy at very low frequencies of time 
domain simulation models for overhead lines and underground 
cables.  In the first two methods, a suitable modification is 
introduced to the functional form of the rational function 
approximated in the curve fitting procedure for the phase-
domain model, such that the model is perfectly accurate at dc 
frequency. By comparing with analytical results, the paper also 
quantifies the errors made in simulation when the fitting at very 
low frequencies is inaccurate. These procedures are numerically 
efficient and robust. These two methods are also compared 
against a third less accurate method which simply adds a series 
dc resistor in the model to correct the dc response. Simulation 
results are presented for underground cable systems. The 
modifications introduced in the paper are expected to be useful in 
the simulation of High Voltage Direct Current (HVDC) 
transmission systems. 

 
Keywords: Electromagnetic transients, rational function 

approximation, direct phase domain model, constrained least 
squares.  

I.  INTRODUCTION 
IGH Voltage direct current (HVDC) transmission of 
power over long distances is seeing increasing 

application with  HVDC lines and cables being installed all 
over the world. Simulation models for such systems are 
required to be accurate over a very wide frequency range from 
zero Hertz -which is the nominal frequency on the line; to 
several tens of kilohertz -for thyristor switching and other 
transients. 
 
The use of modern phase domain modelling techniques 
coupled with parameter estimation using Vector Fitting has 
greatly improved the accuracy of time-domain models for   
transmission lines and cables [2]. Although the time-domain 
model simulates the frequency range from a few Hertz to 
about several kilohertz, it has been difficult to get a good fit in 
the close neighborhood of 0 Hz (dc). For HVDC lines and 
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cables, it is very important to accurately reproduce the 
response in the close vicinity of 0 Hz, as that is the nominal 
frequency on the line. The paper shows that forcibly trying to 
fit the characteristic at these extremely low frequencies 
requires a high order for the fitting rational function and 
sometimes leads to inaccurate fitting. 
 
Time domain models require rational function approximation 
of entries of the characteristic admittance and propagation 
matrices. The paper proposes an efficient new approach based 
on linearization and constrained least squares that achieves a 
highly accurate fitting over the full frequency range. A 
modification is introduced to the functional form of the 
rational function approximated in the curve fitting procedure, 
such that the rational function approximations of the 
propagation matrix and the characteristic admittance can be 
fitted with more accuracy without having to substantially 
increase the number of poles. In this approach, the dc response 
is exact. Two possible variants of the functional form are 
considered. In the first approach, the admittance and 
propagation transfer functions are reformulated so that the dc 
response is factored out as an additive constant which can be 
directly selected. In the second approach, the transfer function 
is first fitted over the entire frequency range, which typically 
results in some fitting error at precisely zero Hz. A low 
frequency first order pole is then added to the resultant fitted 
function in order to realize the exact response at dc, without 
significantly affecting the remainder of the frequency 
response. 
 
Time domain simulations of various transients on HVDC 
underground cables are presented to verify the validity of the 
approach. The above proposed methods are also compared 
with a simplified alternative approach which merely adds a 
corrective series resistance into each conductor to get the 
correct dc line resistance.  However, this approach is shown to 
have poorer accuracy compared with the above approaches. 

II.  PHASE DOMAIN MODELING 
In the discussion to follow, the term ‘line’ refers to both the 
overhead line and the underground cable systems, as the 
treatment developed is common to both. For an n-phase 
transmission line having length l, the frequency domain 
solution of the traveling wave equation can be expressed by 
the well know matrix-vector equations at each end-of the line 
given by [1], 
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In the above equations, V and I are n dimensional voltage and 
current vectors and subscripts ‘k’ and ‘m’ denote sending-end 
and receiving-end of the line.  Y and Z are (n×n) shunt 
admittance and series impedance matrices per unit length 
respectively. The (n×n) Characteristic admittance matrix Yc  
and  the  (n×n) Propagation matrix A are calculated as below 
using matrix functions [1]:  
 

( ) ( )-1  3Yc YZ Y=  

( )-   4YZlA e=  
 
In order to implement the model in the time domain, the 
elements of Yc and A are approximated with rational 
functions of suitable orders M and N [1] in the form shown 
below in (5) and (6). Such forms can easily be converted into 
differential equations which can be numerically integrated. 
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The unknown coefficients, cp and ap (p = 1: N) in equations 
(5) and aq, cq (q = 1: M) and d in (6) are calculated using an 
efficient robust technique called Vector Fitting [3]. Note that 
the time delay (τ) in equation (5) is estimated before the fitting 
procedure. Sometimes for accurate curve fitting additional 
terms are added to (5) with different time delays (see equation 
(10)).  For most practical transient simulation studies, it is 
sufficient to consider frequencies from zero Hz to 1 MHz for 
the fitting procedure. For simplicity, consider a single-
conductor case. 
 

A.  Issues with Fitting of the Transfer Matrices at Low 
Frequency 

 

At very low frequencies, the equations (3) and (4) reduce to, 
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Where,  
 

C    = capacitance per unit length (F) 
Rdc =  dc resistance of the line per unit length (Ω) 

 
 

The square root term of s in equations (7) and (8) does not 
permit a rational function approximation with a low order; and 
thus a higher order rational function may be needed for the 
fitting, if very low frequencies are considered.  
 
Consider the simple three single-core coaxial cable 
configuration shown in Fig 1, with data as in Table I. The 
frequency response of a typical entry Yc(1,1) of its 
characteristic admittance matrix Yc is shown in Fig 2., which 
also shows a plot of a rational function approximation of the 
form (6) obtained by limiting the lower bound  of fitting  
frequency fmin. to 1 Hz..  Note that the fitting at frequencies 
lower than the lower bound is poor. Table II shows the order 
of the fitted transfer function (maintaining the same fitting 
error), with different lower bounds fmin.   For the propagation 
function, decrease in the lower bound form 1 Hz to 1e-3 Hz 
results an increase in the order by 6 poles. This clearly 
indicates that the required order of the fitted function rises 
rapidly as the lower fitting frequency is reduced. 
 
 
 
 
 
 
 
 

Fig 1: Simple Cable System: 3 single-core coaxial cables. 
 
 

TABLE  I 
CABLE DATA 

 
Radius of solid conductor (m) 0.00127 
Outer radius of insulation (m) 0.00228 
Dc resistance (Ω/ km) 0.034 
Relative permittivity of insulation 2.85 
Earth resistivity (Ω-m) 100 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2: Magnitude of Yc(1,1) 
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TABLE II 
ORDER OF RATIONAL FUNCTION APPROXIMATION 

 
fmin 

(Hz) 
fmax for A 

(kHz) 
Order for 

A(1,1) 
Order for 
Yc(1,1) 

1e-3 1.63 22 20 

1e-1 1.63 20 18 

1 1.63 16 16 

10 1.63 16 16 

 
In order to observe the impact of the lower fitting bound, 
simulations are carried out on the cable system in Fig 1 with 
the sending end of the first conductor energized with a step 
voltage and with the receiving end grounded. The two 
remaining conductors are also grounded at both ends.   If a 
sufficiently small lower bound in fitting is not used, the time 
domain simulation shows an incorrect long-term (i.e. after 1 s) 
dynamic response and also shows an incorrect dc solution as 
demonstrated by the plots of sending end current in Fig 3. The 
template for comparison is an analytical solution obtained by a 
direct frequency domain (FD) solution obtained by inverting 
the Laplace Transform of the exact transfer function. The 
response with a lower bound of 1 Hz, which is often selected 
by simulation tool users when studying dc systems, has 12 % 
steady state error. Reducing the lower bound to 0.1 Hz, 
reduces the error to 1%, but achieves this with a significant 
increase in the fitting order as discussed earlier. Note that poor 
fitting at very low frequencies is a major source of error when 
modelling dc lines.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3: Sending-end current of the first conductor under short circuit conditions 

with different lower bounds considered for fitting. 
 
Later in the paper, three approaches to overcome the problem 
are introduced that allow a lower order rational function 
approximation and the same time give the correct dc response. 
The proposed methods can be applied to any phase domain 
model. The Universal Line Model (ULM) [2] is considered in 
this paper, for which a brief description is provided below. 

B.  Universal Line Model 
 

The Universal Line Model (ULM) [2] is a numerically 
efficient, robust phase domain model currently implemented 
in many electromagnetic transient programs such as 
PSCAD/EMTDC. This model is directly formulated in the 
phase domain to avoid difficulties with frequency dependent 
transformation matrices. In ULM, Yc(i,j) has the same 
formulation shown in equation (5) and all  elements of Yc 
share the same set of poles derived from fitting the trace of 
Yc.  
 
Although the propagation matrix is also ultimately represented 
in the phase domain, an intermediate modal domain analysis is 
conducted to obtain the travel times and poles for each mode. 
In the modal domain, this propagation function for the  ith  
mode is: 
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Here, iN  is the order of approximation and unknown 

coefficients 
inc , 

ina  are calculated using Vector fitting. τi is 

the delay corresponding to the ith mode. When converted back 
to the phase domain, the elements of the propagation matrix 
are realized in the form (10) where each of the summation 
terms contains the poles and the travel times for a particular 

mode. The constants 
inc ′ ’ are obtained using least squares 

fitting.  
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III.  METHODS FOR DC CORRECTION FOR THE ULM 
This section introduces three approaches for   improving the 
dc and low frequency response for transmission lines without 
significantly increasing the order of fitting. 
 

A.  Dc Correction by Adding Series Dc Resistor in 
Each Phase 

 
The simplest method for correcting the error at dc frequency is 
to add a suitable series resistance in each conductor. The value 
of this series resistance is equal to the correct dc resistance 
minus the value obtained from the fitted function. Although, 
the model gives accurate dc response, there is a noticeable 
error at other frequencies. For an example, consider a cable 
having an inner conductor and sheath. Series dc resistances 
(6.21 ohms and -5.79 Ohms) must be added to inner 
conductor and sheath respectively to ensure correct dc 
resistance. Fig 4 shows receiving-end voltage for the sheath, if 
the sending-end is energized with step voltage. The sheath is 
kept open at both ends. The simulation output is compared 
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with the FD solution indicating a noticeable error (the 
maximum error of 0.04 A or expressed as a percentage about 
10.1% occurs at approximately t 7ms≈ ). Although such an 
error may be within acceptable limits, in many instances,   the 
addition of the negative resistance could introduce a net 
negative resistance at certain frequencies which leads to an 
unstable simulation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4: Receiving-end voltage of the sheath 
 

B.  Dc Correction by Adding a Pole and Residue 
 

The known characteristic (elements of admittance or 
propagation matrix) is first fitted with a rational 
polynomial ( )fittedf s as in the conventional phase domain 

method.   A real pole ( )0 min0,2 , 1a f k kπ∈ <  with a suitable 
residue c0 is added to it, so that the modified function gives 
the exact dc value at zero frequency. This modification 
increases the order of the rational function by only one and 
does not affect the high frequency asymptote.  Also, as the 
cutoff frequency of the additional term is smaller than the 
lower fitting bound, this correction is achieved with a very 
small error to the fitted part. 
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Fig 5: Magnitude of  A(1,1) after and before addition of pole and residue 

The choice of a0 (or k in above paragraph) is selected by 
another optimization process that minimizes the error between 
the actual frequency response and that of fmod. As seen in the  
frequency response of one of the propagation matrix elements 
A(1,1) in  Fig  5, the selection of the pole at frequencies 
2 0.05 r/s π ×   or 2 0.5 r/s π × , all give the accurate response 
at   frequencies approaching dc, but the pole at 2 0.5 r/s π ×  
gives the closest fit over the entire low frequency range. Note 
that without any correction, the frequency response curves of 
Fig. 5 indicate the presence of a steady state error. The 
corresponding time domain simulations for the line current are 
shown in Fig 6 where this steady state error is visible. When 
no correction is applied, this error is unacceptably large 0.2 A 
(33.2 %). When the correction is applied, there is no error in 
the steady state response. The pole frequency must be 
carefully selected. If this is too small, then the time required to 
reach steady state becomes large as seen in Fig. 6 
for 2 0.05 r/s π × . This is also seen from Fig. 5, where the 
frequency curves for 2 0.05 r/s π × begins to deviate from the 
analytical result at 210− Hz. If the pole frequency is too large, 
it begins to interfere with the original fitted result ( )fittedf s as 
indicated by (11). In the above case, the original function was 
fitted with a lower frequency bound of 1 Hz (see Table I) so 
the pole must be at a frequency less than 1 Hz.  Selecting a 
frequency of 0.5 Hz ( 2 0.5 r/s π × ) gives a more accurate 
response that closely matches the analytical result as seen in 
Fig. 6. There is some error in the initial 2 s, with the maximum 
error of 0.13 A occurring at about 1 s. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6: Sending-end current of first conductor with different poles selected. 
 

Comments on Complexity of Fitting Method:  The proposed 
method of adding a pole is carried out after the vector fitting 
approach described in Section II. The vector fitting is used to 
fit the frequency response characteristic with a relatively large 
value of minf  of say, 1 Hz. As seen in Table I, this can be 
achieved with much reduced number of poles (6 less for 
A(1,1), 4 less for Yc(1,1)) than a fit to a lower frequency of 
say 310− Hz.  Hence the order of the modified fitted 
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function ( )modf s  is just increased by one (due to the added 
pole). Hence the corresponding time domain model has a 
significantly reduced number of poles and is thus numerically 
more efficient. In addition, it guarantees the exact value for 
the dc component. 
 

C.  Dc Correction by Changing the Functional Form 
 
If the equations (6) and (10) are written in an equivalent form 
(12) and (13), it is readily seen that putting s=0 results in a 
single term which is the response at dc (i.e. the term 
ddc,theoretical). By selecting this term to be precisely the known 
exact dc value, a perfect fit at dc is guaranteed. This approach 
is introduced for the ULM in this paper, although an 
equivalent approach for the Z-Line Model is discussed in 
paper [6].  
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These modified equations can be re-expressed in the form 
similar to equation (6) and (10) so as to make the formulation 
amenable to the vector fitting process.  The details are as 
given in Appendix. A minor drawback of the method is that 
although the dc error is eliminated, the resultant propagation 
function at very large frequency deviates marginally from 
zero, which is contrary to the physical properties of typical 
propagation functions. The error made is small, however the 
terms Cn in equation 12 can be slightly perturbed using 
another least squares fitting to taper the high frequency 
response to zero. Note that this procedure does not alter the 
correct dc value. 
 
 As seen from the frequency response plots of the three 
elements of the  first column of propagation matrix A in Fig. 
7, this approach results in excellent fit over the entire 
frequency range, without any increase in the order of the fitted 
function. The corresponding time domain simulation for a 
short circuit on the cable in Fig 3 is shown in Fig 8, over a 10 
s interval and shows accurate reproduction of the response 
obtained by purely frequency domain calculations. A similar 
accurate response is obtained for an open circuit termination 
as seen in Fig 9, which also confirms that the higher 
frequencies are also accurately simulated. 
 
Comments on Complexity of Fitting Method :  For the cable 
system shown in Fig 1, the proposed change in functional 
form results in a perfect dc fit of the actual frequency response 
characteristic. The orders of the fitted transfer functions for 
typical parameters, say A(1,1) and Yc(1,1) are both 16. This is 
the same as that for a fitting with a lower frequency of 1 Hz 
(see Table II), which has been shown to give a poor dc 

response. Trying to achieve a good dc response by reducing 
the lower fitting frequency of say 310− Hz adds 6 additional 
poles to A(1,1) and 4 to Yc(1,1) and yet may not give the 
accurate response at exactly 0 Hz..   
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 7: Actual and Fittted Magnitudes of A(1,1), A(2,1) and A(3,1) with 
Change in Functional Form 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 8: Sending-end Current of First Conductor with and without Correction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 9:  Induced voltage on middle conductor under open circuit conditions, if 

the left conductor is energized with step voltage. 
 



IV.  CONCLUSIONS 
The paper demonstrates that the traditional approach to 
modelling cables and transmission lines in the time domain 
using fitted admittance and propagation characteristics can 
result in significant errors at frequencies approaching dc. 
Although some improvements can be made with reducing the 
lower bound of the fitting frequency to make the dc fitting 
more accurate, this usually results in an increase in the order 
of the fitted transfer functions. Alternative approaches which 
modify the form of the implemented transfer function, either 
by adding a low order pole or by reformulation in a form that 
permits direct specification of the dc values, result in accurate 
simulations over the entire frequency range from dc to higher 
frequencies. These two methods are more accurate and 
potentially more stable in comparison with a simplified 
treatment of adding a corrective series resistance in each 
phase. In particular, the second of these two method is 
especially easy to implement and is recommended for the 
modelling of HVDC transmission systems in which faithful 
reproduction of the very low frequency behavior is just as 
important as high frequency behavior. 

V.  APPENDIX 
Using proper choice of variables, functions in equation (13) 
can be converted into a form suitable for vector fitting. 
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The unknown coefficients (a˝m’s and c˝m’s can be calculated 
using Vector fitting). Same procedure can be applied to 
equation (12) for A(i,j). 
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