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Abstract-- In this paper, a computer-aided sensitivity analysis 

tool is developed for analyzing nonlinear optimum systems. To 

enable sensitivity analysis around the optimum points, the concept 

of second-order sensitivity analysis is introduced. The developed 

tool not only provides the conventional sensitivity indices (which 

are useful for non-optimal solutions), but also provides the 

second-order sensitivity indices. The proposed method have been 

exemplified using Selective Harmonic Elimination (SHE) 

switching scheme for voltage sourced converters. 

 
Index Terms—Sensitivity analysis, transient simulation, 

selective harmonic elimination, STATCOM. 

I.  INTRODUCTION 

IMULATION-BASED optimization tools  [1],  [2], which 

have been developed recently, allow the designer to 

optimize the design parameters of complex nonlinear systems 

in a much shorter time and with less simulation intensity (i.e., 

number of simulations required to determine the optimum) 

than conventional random or sequential search methods. In 

these new tools, the search for the optimum is carried out by a 

nonlinear optimization algorithm; transient simulation is used 

to evaluate a corresponding objective function whose 

minimization yields the optimum system performance  [1].  

An important issue to consider once the optimal solution is 

obtained is to determine the sensitivity of the design to the 

variations of the optimized parameters. Such variations can be 

caused by manufacturing tolerance, aging, change of operating 

conditions (e.g., temperature change), and measurement errors 

(in case of closed loop systems). Therefore, it is an 

indispensable step of the design procedure to determine how 

the performance of the optimized systems is affected when 

parameters deviate from their optimized values. 

Conventional sensitivity analysis methods have been 

developed and used for such studies  [3]. However, those 

methods have two main drawbacks. First, there is often no 

analytical solution for complex nonlinear systems; therefore 

analytical sensitivity assessment methods cannot be readily 

applied. Second, the majority of sensitivity analysis methods 

use first-order derivatives to estimate sensitivity to parameter 
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changes  [3],  [4]. However, such derivatives vanish around an 

optimum (unless optimized under constraints), thus they fail to 

provide useful information. 

In this paper, a computer-aided sensitivity analysis tool is 

developed for nonlinear systems for which analytical 

formulation of the performance index is not attainable. To 

enable sensitivity analysis even around optimum points, the 

concept of second-order sensitivity analysis is introduced and 

implemented. The developed sensitivity analysis tool not only 

provides the conventional sensitivity indices (which may be 

useful for non-optimal solutions), but also provides the 

second-order sensitivity indices.  

The usefulness of the proposed methods, which have been 

implemented in the PSCAD/EMTDC  [5] electromagnetic 

transient simulation program, is demonstrated by studying 

Selective Harmonic Elimination (SHE) switching scheme for 

voltage sourced converters.. 

II.  SENSITIVITY ANALYSIS OF NONLINEAR SYSTEMS 

The majority of conventional sensitivity analysis methods 

are based on first-order derivatives of the system performance. 

The well-known Bode logarithmic sensitivity index is a 

widely-used index defined as follows  [3]: 
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where f is the performance function (e.g., THD of a converter 

current, or a bus voltage), xi is the i-th adjustable parameter of 

the system (e.g., firing angle of a converter, or size of a 

capacitor), and f
xi
S  is the sensitivity index of f with respect to 

xi. Having found all sensitivity indices, one can study the effect 

of parameter variations (∆xi) on the behavior of a system 

performance (represented by f) using the following equation: 
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However, conventional sensitivity indices are not effective 

when the sensitivity of an optimum solution is considered. By 

definition, an optimum is a point at which all first order 

derivatives are zero (unless the optimum lies on the boundary 

of the optimization space). Under such circumstances, the 

sensitivity indices given by (1) become zero (or very small in 
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case of an approximate solution) and hence fail to provide 

useful information.  

Consider Fig. 1, in which a single-variable functions f is 

shown. The function attains its minimum at x0=1, where the 

first-order derivative of the function becomes zero. A local 

estimation of the function using its Bode sensitivity index (1) 

yields ( ) ( ) ( )001 1 xf
x

x
Sxfxf f
x =







 ∆
+= , as 0=fxS  at the 

optimum. 
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Fig. 1.  First-order (f1) and second-order (f2) estimation around an optimum. 

 

To allow assessment of sensitivity around optimal points of 

a given performance index, second-order sensitivity analysis is 

proposed. The second-order sensitivity indices are defined as 

follows. 
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Using the second-order derivatives one can obtain an 

estimation of a given multi-variable function by considering 

both first and second-order terms as follows.  
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For the single-variable function f, an improved estimation 

of the function using its second-order sensitivity indices is as 

follows. 
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As it can be seen in Fig. 1, f2 is a more accurate 

representation of f than f1. Note that if the estimations are 

obtained around a non-optimal point (where the first-order 

derivatives are non-zero), the first-order sensitivity analysis 

will still provide acceptable estimation of the function; 

however, for further accuracy and in order to estimate 

functions around their local optima, second order indices are 

necessary.  

III.  EVALUATION OF SENSITIVITY INDICES 

A.  Evaluation of the Performance Function 

If an analytical expression of the performance function of a 

given system is readily available, one can use (1) and (3) to 

calculate first and second-order sensitivity indices. Such 

formulation however, is usually not attainable for complex 

systems, and therefore, numerical methods need to be 

employed for their calculation. Evaluation of the performance 

function for such systems is possible either through direct 

measurement or through simulation. 

Electromagnetic transient simulation programs are able to 

accurately model and simulate power systems, which include 

nonlinear and switching devices  [6]. In this paper, 

PSCAD/EMTDC program has been chosen as the simulation 

platform to simulate and evaluate the performance index of a 

complex network. 

Although PSCAD/EMTDC is able to simulate the system 

behavior accurately, it is not able to calculate the sensitivity 

indices directly. However, it can be used as an evaluator of the 

performance function  [1], and it is interfaced with an external 

algorithm that uses such function evaluations for estimation of 

respective sensitivity indices. 

B.  Numerical Estimation of the Sensitivity Indices 

For a positive incremental change in one of the variables of 

a multi-variable function, the following expression can be used 

to estimate the function variation using the Taylor series 

expansion (third and higher order terms are neglected). 
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Similarly for a negative increment, we obtain: 
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Combining (6) and (7) yields the following expressions for 

estimated values for both first and second order derivatives of 

the function with respect to the incremented variable. 
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Note that estimation of partial derivatives requires two 

function evaluations, i.e.,  ( )nii xxxxf ,,,,1 LL ∆+  and 

( )nii xxxxf ,,,,1 LL ∆− , which in the case of simulation-

based approach leads to two transient simulations of the 

system.  

Having found estimations of the above partial derivatives, 

one can use the same approach to determine mixed partial 

derivatives as follows. Note that the right-hand side terms in 

(8) and (9) depend only on function evaluations for various 

parameter values, which can be obtained using simulation of 

the network for the corresponding parameters. Also note that 

calculation of mixed partial derivatives (9) requires the 

derivatives obtained in (8).  
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Fig. 2 shows a schematic diagram of the interface between 

the simulation program and the external sensitivity index 

calculator. 

 

 
 

Fig. 2.  Multiple simulation technique used for estimation of derivatives. 

IV.  CASE STUDY: SELECTIVE HARMONIC ELIMINATION 

In this section the proposed sensitivity analysis tool is used 

to assess the performance of a Selective Harmonic Elimination 

(SHE) scheme for generation of firing pulses for high power 

converters. These techniques gained popularity in high power 

applications  [7],  [8] due to their lower switching losses and 

better harmonic spectrum than conventional pulse-width 

modulation (PWM) methods. In these methods, by choosing 

proper switching angles, a certain number of harmonics are 

eliminated from the output voltage of the converter.  
 

Fig. 4 shows a typical output voltage of a two-level 

converter (shown in Fig. 3) with SHE switching pattern. As 

shown, the waveform has five chops in each quarter-cycle, 

which provides five degrees of freedom to improve the output 

voltage of the converter. By proper selection of those angles, 

the fundamental voltage can be controlled, and four harmonics 

can be eliminated. Increasing the number of the chops enables 

elimination of more harmonic components. 
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Fig. 3.  Two-level inverter 

 
 

Fig. 4.  Harmonic elimination switching pattern 

 

Analytical solution for the switching angles is available for 

idealized converters, in which the dc-side voltage is constant. 

However, switching at exact instants of time specified by the 

idealized solutions may not be possible due to digital 

implementation of SHE. Such firing mismatch will introduce 

remnant harmonics in the synthesized output voltage. 

Sensitivity analysis can be used to quantify the deviations in 

the harmonic spectrum from the idealized situation.  

In this section, an ideal voltage sourced converter (VSC) 

with a constant dc voltage is first considered. Simulation-based 

sensitivity analysis is used to assess the harmonic spectrum of 

the voltage waveform in presence of firing mismatch. Since an 

analytical solution is available for this idealized case, the 

results obtained using simulation can be verified against those 

obtained analytically. In the second example, simulation-based 

sensitivity is done for a static VAR compensator (STATCOM) 

with a capacitive dc-link, which introduces fluctuations in the 

dc voltage. Complexity of the network and its interactions with 

the VSC in the latter example prohibits an analytical 

formulation of the problem; this necessitates the use of the 

proposed simulation-based tool. 

A.  Case I: Inverter with Ideal DC Voltage 

For a two-level converter with SHE firing, the harmonic 

content of the output voltage is calculated as follows  [9]: 
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where, αi is the i-th switching angle, Vn is the rms value of the 

n-th harmonic of the voltage, and 2Vdc is the total dc bus 

voltage. To regulate the fundamental and eliminate N-1 
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harmonic components, a system of N nonlinear equations of 

the form (10) needs to be solved simultaneously for the N 

switching angles.  [9]. For a waveform with 5 chopping angles, 

the system of equations will be as follows. 
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where m is the modulation index defined as follows: 

1
4

2
V

V
m

dc

π
=                  (12) 

Table I shows the 5 chopping angles for a two-level VSC 

with constant dc-bus voltage of 24 kV (total), when the 

fundamental phase voltage is regulated to 8 kV rms, i.e., 

m=0.74 in the system of equations in (11).  
 

TABLE I 

SWITCHING ANGLES TO ELIMINATE 5TH, 7TH, 11TH, AND 13TH
 HARMONICS 

 

Vdc = ±12 kV , V1 = 8 kV, m=0.74 

SHE Switching Angles 

α1 α2 α3 α4 α5 

11.0° 23.3° 29.9° 46.3° 50.8° 
Harmonic Spectrum of the Output Voltage 

V1 V5 V7 V11 V13 

8.0 kV 0.0 kV 0.0 kV 0.0 kV 0.0 kV 

 

As an example, the impact of firing angle mismatch on the 

fifth order harmonic (which is the lowest order targeted 

harmonic) is considered.  The developed sensitivity analysis 

tool has been used to calculate the sensitivity indices 

(derivatives) of |V5| with respect to the switching angles αi. 
The results are shown in the Table II. 

 
TABLE II 

SENSITIVITY ANALYSIS RESULTS OF THE FIFTH ORDER HARMONIC  

 

|V5| 
1α∂

∂  

2α∂
∂  

3α∂
∂  

4α∂
∂  

5α∂
∂  

1 -0.033 0.011 -0.036 -0.038 0.031 

1α∂
∂  

2.445 -1.233 0.130 0.168 -2.263 

2α∂
∂  

-1.233 1.357 -0.752 -1.179 0.072 

3α∂
∂  

0.130 -0.752 1.076 0.123 -1.380 

4α∂
∂  

0.168 -1.179 0.123 2.212 -2.165 

5α∂
∂  

-2.263 0.072 -1.380 -2.165 2.608 

 

The table shows both first and second order derivatives, 

which are estimated with the developed tool (for example 

036.0
3

5 −=
∂

∂

α

V
[kV/deg] and 752.0

32

5
2

−=
∂∂

∂

αα

V
[kV/deg

2
]). 

Suppose that there is a 0.1° switching error for each of the 
switching angles (note that for a 60 Hz system, 0.1° 
corresponds to 4.6 µs mismatch in switching time). Using (4), 

an explicit first-order or quadratic function for |V5| (depending 

on whether first- or second-order derivatives are used) with 

respect to switching angles α1 ... α5 can be obtained, which can 

then be used to estimate the worst-case scenario. Table III 

shows the results for the worst-case combination of the 

switching angles using the estimated derivatives in Table II.  

Note that the estimated remnant 5
th
 harmonic using first-

order derivatives is 0.3%, which is far less than the actual 

value of 1.9% obtained using (10) for the deviated angles. 

Second-order derivatives however, provide a closer estimation 

of 2.1%.  

 
TABLE III 

THE WORST CASE FOR 5TH
 HARMONIC 

 

∆α1 -0.1° 5th Order Harmonic 

∆α2 +0.1° 
∆α3 -0.1° 

First-Order 

Estimation 

Second-Order 

Estimation 

Analytical 

Result 

∆α4 -0.1° 
∆α5 +0.1° 

0.023 kV 

(0.3% of V1) 

0.167 kV 

(2.1% of V1) 

0.149 kV 

(1.9% of V1) 

 

Note that the switching angles given in Table II are an 

optimum solution for the selective harmonic elimination 

problem laid out in (11). However, they are an optimal 

solution for elimination of the 5
th
 harmonic as well. Since first-

order derivatives tend to vanish around an optimum, they fail 

to provide an acceptable estimation of the remnant harmonics. 

On the other hand, the proposed second-order technique can 

estimate the system performance with considerably higher 

accuracy. 

B.  Case II: SHE for a Static Compensator 

In practice, voltage-sourced converters are often supplied 

on the dc side through a capacitor. Unlike an idealized dc 

source, a capacitor will experience voltage fluctuations during 

normal and transient operation of the converter. Although 

provisions for minimizing such fluctuations are incorporated 

into the design of the capacitive dc buses, small voltage ripple 

will still be present.  

Fig. 5 shows the schematic diagram of a static VAR 

compensator (STATCOM) with a capacitive dc bus. The VSC 

is connected through a transformer to an ac network. Other 

system specifications are listed in Table IV. SHE switching 

pattern with five chops is used in order to shape the output 

voltage. The corresponding switching angles for harmonic 

elimination (obtained using idealized equations in (10)) are 

shown in Table V. Under normal operating conditions the 

STATCOM injects 4.7 MVAR to the network (when the 

angles listed in Table V are used for switching). Note that due 

to the variations in the dc voltage, the harmonics are not 

completely eliminated although the residual values are quite 

small. It has been shown in [8] that the idealized solution of 
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(10) is quite close to the solution obtained using optimization-

based simulation of the non-ideal network. 

 The complexity of this nonlinear network makes 

formulation of the sensitivity of harmonics to switching angle 

variations excessively difficult when dc voltage fluctuations 

and firing mismatch are considered simultaneously. Note that 

although in this case the idealized formulation in (10) becomes 

invalid, the method proposed here is still capable of estimating 

sensitivity indices through detailed simulation of the network. 

 

 
Fig. 5.  STATCOM case 

 
TABLE IV 

SYSTEM PARAMETERS 

 

Network 20 kV, SCR = 3.5 

STATCOM Transformer 4.8 kV/20 kV, 8.0 MVA, Xl = 15% 

Capacitor Bank 4.0 MVAR 

Load 18.0 MVA, pf = 0.9 

STATCOM Converter 4.8 kV, C = 0.27 pu 

 
TABLE V 

STATCOM SWITCHING ANGLES AT THE NOMINAL OPERATING POINT 

 

Vdc = ±8.5 kV 
SHE Switching Angles 

α1 α2 α3 α4 α5 

11.0° 23.3° 29.9° 46.3° 50.8° 
Harmonic Spectrum of Output Voltage 

V1 V5 V7 V11 V13 

11.33 kV 0.03 kV 0.01 kV 0.00 kV 0.00 kV 

 

The dc-bus voltage and the resulting ac voltage and at the 

VSC and network terminals are shown in Fig. 6, 7 and 8, 

respectively. 
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Fig. 6.  STATCOM dc-bus voltage 

 

As shown the dc voltage has high frequency ripple around 

its average value of 8.5 kV. Such ripple is also reflected on the 

ac side in the form of fluctuations on the pulses comprising the 

output voltage. The impact of firing mismatch on the fifth 

order harmonic in the presence of ripple is quantified through 

the sensitivity indices given in Table VI, which are obtained 

using the proposed simulation-based sensitivity analysis. 
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Fig. 7.  Phase-a voltage of the converter. 
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Fig. 8.  Phase-a network voltage. 

 
TABLE VI 

SENSITIVITY ANALYSIS RESULTS FOR THE STATCOM VOLTAGE 

 

|V5| 
1α∂

∂  

2α∂
∂  

3α∂
∂  

4α∂
∂  

5α∂
∂  

1 -0.095 0.045 -0.083 -0.107 0.112 

1α∂
∂  

2.677 -1.533 0.365 0.559 -2.745 

2α∂
∂  

-1.533 2.123 -1.310 -1.530 0.201 

3α∂
∂  

0.365 -1.310 1.666 0.375 -2.365 

4α∂
∂  

0.559 -1.530 0.375 2.577 -2.842 

5α∂
∂  

-2.745 0.201 -2.365 -2.842 3.749 

 

Similar to the previous example, the above indices are used 

to obtain first and second-order approximations of the 

magnitude of the fifth harmonic around the optimized set of 

switching angles. Using such approximations, one can perform 

a study of the worst-case scenario of the reemergence of the 

fifth harmonic when firing angles mismatch their optimized 

values within a given tolerance. Table VII shows the worst-

case combination of the switching angles and the estimated 

remnant fifth harmonic using both first and second-order 

approximations. As shown, the first order method gives an 

estimated value of 0.4%, while the value predicted by the 

second order method is 2.2%. Note that a direct simulation of 

the network for the worst case combination of switching angles 

(an analytical expression is unavailable for this case) also 

yielded a 2.2% of fifth harmonic, which matches the second 
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order estimation.  

 
TABLE VII 

THE WORST CASE FOR 5TH
 HARMONIC FOR THE STATCOM 

 

∆α1 -0.1° 5th Order Harmonic 

∆α2 +0.1° 
∆α3 -0.1° 

First-Order 

Estimation 

Second-Order 

Estimation 

Simulation 

Result 

∆α4 -0.1° 
∆α5 +0.1° 

0.044 kV 

(0.4% of V1) 

0.246 kV 

(2.2% of V1) 

0.251 kV 

(2.2% of V1) 

V.  CONCLUSION 

The paper introduced simulation-based methods for 

evaluation of the sensitivity of the performance of a circuit to 

perturbations in its design parameters. The second-order 

sensitivity indices were proposed to enable sensitivity analysis 

around optimal solutions, where conventional first-order 

indices vanish. The approach proposed in the paper uses 

transient simulation of the network for numerical estimation of 

first and second-order derivatives, which will be used 

subsequently to obtain a quadratic approximation of the 

performance function, which is used to perform such studies as 

worst-case analysis.  

The paper presented an implementation of the method in 

the PSCAD/EMTDC and used the developed tool to assess the 

sensitivity of the harmonic content of the output voltage of a 

VSC to variations of the switching angles under selective 

harmonic elimination. Since sensitivity around an optimal 

solution was considered, first order derivatives provided a 

poor estimation of the remnant harmonics while second-order 

indices yielded estimations of much higher accuracy. It was 

shown that the estimated results agreed well with the analytical 

solution (for the idealized VSC with constant dc voltage) and 

direct simulation for the STATCOM example with fluctuating 

dc voltage. 
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