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 Abstract-- An increase of back-flashovers in a 110-kV system 
has been observed along an overhead line route that consists of 
multi-circuit transmission towers of voltage levels 380-kV, 220-
kV and 110-kV at the same tower. The height of multi-circuit 
towers varies in the range of 55 m – 88 m. The 110-kV double-
circuit line is positioned at the lowest cross-arm of the tower. 
Influence of the various factors on the back-flashover of the 110-
kV insulator strings has been studied by means of EMTP-ATP 
simulations. Different current waveforms of the lightning stroke 
have been used to represent the first stroke and subsequent 
strokes. Available flashover analysis methods like leader 
development method by Pigini et al and by Motoyama, as well as 
the voltage-time integration method by Kind have been 
implemented using  a simulation language and the performance 
of flashover models has been compared. 

The purpose of this study was to identify those towers at 
which back-flashover is more likely to occur than at other towers 
along the line route. Replacement of one insulator string of a 110-
kV duplex insulator by a surge arrester is shown to be a 
successful mitigation technique to reduce the back-flashover rate 
of those 110-kV lines. 

 
Keywords: flashover, back-flashover, lightning stroke, 

lightning surge, transmission tower, EMTP. 

I.  INTRODUCTION 

he tripping of a 110-kV double-circuit overhead line 
has been increased in a certain region at thunder-

storms, where relatively tall multi-circuit transmission towers 
were installed. The multi-circuit transmission route consists of 
380-kV, 220-kV and 110-kV overhead lines at the same 
tower. Lightning strokes registered by lightning flash counters 
in this region showed a maximum stroke current of 90 kA. 
The high-frequency measurement of the tower footing 
resistance with a 26-kHz measuring current has revealed that 
the resistance value is relatively high at the three towers. 

A back-flashover analysis should indicate which towers of 
that 5.2-km line route are rather prone to back-flashovers of 
the 110-kV insulation strings depending on different factors 
like tower footing resistance, tower surge impedance, tower 
height, etc. There are various methods published before to 
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model lines, towers, lightning strokes and flashover 
mechanism over the insulators. Since measurements on real 
towers [1] are costly, various simulation models should be 
compared with each other to validate the simulation results. 

A measure to prevent back-flashovers is to replace one 
insulator string of a duplex line insulator by a surge arrester. 
The protective level of the surge arrester for lightning strokes 
should be selected such that the surge arrester discharges 
earlier than the flashover of the insulator. Furthermore, it is 
important to equip a series of towers with surge arresters 
without leaving out a tower in-between. 

The transients program EMTP-ATP with the integrated 
simulation language MODELS is well suited to analyze 
lightning surge phenomenon on overhead lines as reported 
several times in publications [3], [4]. 

II.  MODELING METHOD 

The modelling methods for the back-flashover analysis 
applied in this paper are based upon various publications in 
this field [3], [6] – [9]. 

A.  Multi-Circuit Towers 
The height of multi-circuit towers varies in the range of 55-

88 m. The tower structure also varies from tower to tower 
along the 5.2-km route. The layout of a typical suspension 
tower is shown in Fig. 1. The distances are given in meters. 
The upper two cross-arms carry at left and right side a 220-kV 
and 380-kV single-circuit line, respectively. A 110-kV 
double-circuit line is suspended from the lowest cross-arms. 

The tower is represented by loss-less Constant-Parameter 
Distributed Line (CPDL) model [2]. The propagation velocity 
of a traveling wave along a tower is taken to be equal to the 

light velocity,  [3], [8]. The tower traveling time is t
h
c

τ = .  h 

is the tower height. 
There are several formulas to calculate the surge 

impedance of the tower [3], [8-10]. As a basis, the formula 
given in [10] for “waisted tower shape” (Fig. 2) and 
recommended by IEEE and CIGRE [8] is used: 
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Fig. 1.  Layout of a typical multi-
circuit suspension tower 

Fig. 2.  “Waisted” tower shape to 
calculate tower surge impedance 

 
For a tower of 76.5-m height 

(1) delivers the following value: 
233.3t waistZ − = Ω . 

It is recommended in Japan [3] 
to consider frequency-dependent 
effects for wave propagation along 
towers, when the tower footing 
impedance is represented by a 
linear resistance, which is the case 
in this study. The tower model 
consisting of CPDL model sections 
is added by RL parallel circuits at 
each section to represent traveling 
wave attenuation and distortion as 
shown in Fig. 3.  

The RL values are determined 
as functions of surge impedance Zt, 
traveling time τt, distances between 
cross-arms x1, x2, x3, x4, and 
attenuation factor, 0.89α =  as 
recommended in [3] by following 
equations: 

12 lni
i t

x
R Z

h α
⎛ ⎞= ⋅ ⋅ ⎜ ⎟
⎝ ⎠

 (2) 

2i t iL Rτ= ⋅  (3) 

The cross-arms are not represented in the tower model. 

B.  Number of Towers 
Total 19 towers of a part of a line route shown in Fig. 4 are 

represented including all overhead lines. Direct lightning 
strokes to towers between tower #1 and #12 are analyzed. 

 
Fig. 4.  Modelled part of the transmission line route with a junction at tower 
#1 (GW: ground wire) 

C.  Transmission Lines 
All overhead lines at the same tower are represented by the 

CPDL model at 400 kHz.f =  Ground wire is represented like 
a phase wire, which is connected to the top of the towers (see 
Fig. 1). Data of the conductors are: 

- 380 kV:  4 conductors/phase, ACSR 265/35 Al/St 
- 220 kV:  4 conductors/phase, ACSR 265/35 Al/St 
- 110 kV:  1 conductor/phase, ACSR 265/35 Al/St 
- ground wire:  AY/AW 216/33 (aerial cable) 
In order to take into account the effect of the AC steady-

state voltage of the lines on a lightning surge, the transmission 
lines are connected to AC voltage sources via multiphase 
matching impedance (surge impedance matrix). 

D.  Lightning Current and Impedance 
The lightning stroke is modeled by a current source and a 

parallel resistance, which represents the lightning-path 
impedance. Lightning-path impedance is selected as 400 Ω 
according to [3].  

Two different lightning current waveforms are used to 
represent a) first stroke and b) the subsequent strokes: 
a) CIGRE waveform of concave shape with front time, 

3 µsfT =  and time to half value, 77.5 µshT = . 
b) Linear ramp waveform with 1 µsfT =  and 30.2 µshT =  

In fact, according to [8] the front time of the first stroke 
depends on the peak value of the lightning current. In this 
study Tf and Th are assumed to be constant. The maximum 
rate-of-rise Sm of the current has been so adjusted, that the 
ratio fI T  to Sm corresponds to the average values of  a first 

stroke: 31 kA, 26 kA/µs, 3 µsm fI S T= = = [8]. Fig. 5 shows 
both current waveforms with a magnitude of 50 kA. 

E.  Flashover Models 
Flashover models estimate the breakdown of the air 

between the arcing horns of the line insulators under non-
standard wave forms.  

Fig. 3. Tower model with 
additional RL-circuits 
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Fig. 5.  Lightning current waveforms; CIGRE concave waveform, linear ramp 
function 

In the literature there are mainly two methods are known 
besides the simple flashover estimation by means of a volt-
time curve of an insulator [7], [8]. They are integration 
methods and Leader development methods. In this study three 
flashover models are applied for comparison purposes. 

a) Equal-area criterion by Kind [6], [8], [14]; 
b) Leader development method by Motoyama [4], [12]; 
c) Leader development method by Pigini et al. [8], [13]. 

Wave deformation due to corona is not considered in the 
lightning surge simulations. The surge propagating on the 
ground wire can be normally deformed by corona. In this 
paper it is assumed that the lightning stroke terminates at the 
tower.  

    1)  Equal-area criterion by Kind 
The criterion by Kind requires two parameters, U0 and F, 

and it is tested simply by evaluating the following integral 
numerically: 

[ ]0
0

( )
flot

u t U dt F− ≥∫  (4) 

where u(t) is the voltage waveform across the insulator. 
When the time integral of the voltage difference (u – U0) 

becomes greater than the value of F, then at t = tflo the 
flashover occurs. In other words, any impulse voltage 
waveform can lead to a flashover, if a certain volt-time area 
will be covered. The unknown parameters U0 and F can be 
obtained from the 50 % sparkover volt-time characteristic of 
the insulator [16]. This characteristic is established as a 
function of the insulator length [7] and alternatively, from the 
known arcing distance of the 110-kV insulators [15]. Both 
curves are very close to each other and shown in Fig. 6. The 
unknown parameters in (5) are determined according to [16]:  
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Fig. 6.  50 % flashover volt-time curve of the 110-kV insulator 

    2)  Leader development method by Motoyama 
Leader development methods for flashover analysis gives 

special consideration to physical aspects associated with the 
discharge mechanism [7], [8]. The flashover model by 
Motoyama [12] is developed for short tail lightning impulse 
voltages. It is based on experiments for 1m…3m gap lengths. 
The leader onset condition for positive polarity is used: 

( ) ( ) ( )
0

1 ( ) 400 50
sT

ave
s

u t dt U kV D m kV
T

= > ⋅ +∫  (5) 

where u(t) is the imposed voltage between archorns and D 
is the gap length in meter. Ts is the streamer developing time 
(= leader onset time). The leader developing process is 
defined by following equations: 
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( ) ( )LAVE AVEx t v t dt= ∫  (m) (7) 

02L LAVEq K x= ⋅   (C) (8) 

where qL is the charge accumulated in the leader; xLAVE is 
the average value of the leader-developing length; and vLAVE is 
the leader-developing velocity. The constants E0, K0, K1A, K1B 
are set to 750 kV/m, 410 µC/m, 2.5 m²/(Vs) and 0.42 m²/(Vs), 
respectively. 

The breakdown occurs when xLAVE attains D/2. If the 
applied voltage u(t) becomes less than ( )0 2 LAVEE D x⋅ −  
during a leader-developing process, the leader is considered to 
stop its development. 

    3)  Leader development method by Pigini et al. 
The flashover condition is estimated by the imposed 

voltage across the air gap. The leader onset condition is given 
as [13] 

0( ) pu t E D≥ ⋅  (9) 

where D is the gap length and 0 670 kV mpE = . 
The equivalent leader-developing velocity vl (m/s) is 

computed according to following equation, which was 
evaluated by several measurements [13]: 

( )0
( )170 exp 0.0015 ( ) /l p

l

u tv D E u t D
D l

⎛ ⎞
= ⋅ ⋅ − ⋅ ⋅⎜ ⎟−⎝ ⎠

 (10) 

where ll is the leader length in meter; u(t) is the voltage 
imposed to the air gap. The leader length is obtained by the 
integral of leader-developing velocity: 

( )l ll v t dt= ∫  (11) 

The breakdown occurs, when the leader length ll is equal to 
the gap length D. 
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    4)  Representation of the Air Gap Breakdown 
The discharge in the air gap can be represented by a time-

dependent arc resistance, decreasing from 1 kΩ, to 1Ω in 
0.1 µs and to 0.1Ω in 1 s, based on [14]. 

III.  BACK-FLASHOVER PERFORMANCE ESTIMATION 

In order to estimate roughly which towers on the route 
from tower #1 to #12 (Fig. 4) are endangered by back-
flashovers across 110-kV insulators, a systematic analysis is 
performed. Following two lightning current waveforms are 
injected to each tower in question.  

− CIGRE waveform,  20 90 kA; 3µs / 77.5µsI =  
− Linear ramp function, 20 90 kA; 1µs / 30.2 µsI = . 
The current amplitude has been increased in 5 kA steps 

from 20 kA up to 90 kA and back-flashover across the 110-
kV insulators has been examined simultaneously by the three 
flashover models. The simulation results are summarized in 
figures 7 and 8 for the two current waveforms. In those 
diagrams the minimum lightning peak current is shown that 
causes a back-flashover at the 110-kV insulator. Following 
observations are made regarding back-flashovers: 

− Generally towers #3, #4, #5, #8, #9 are more likely to 
produce a back-flashover than the other towers. 

− The back-flashover at the towers depends on the current 
waveform as expected. 
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Fig. 7.  Minimum lightning peak currents of CIGRE waveform (3/77.5 µs) 
causing back-flashover at the 110-kV insulators 
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Fig. 8.  Minimum lightning peak currents of linear ramp type (1/30.2 µs) 
causing back-flashover at the 110-kV insulators 
 
 

− The flashover models perform differently depending on 
the lightning current waveform. The flashover model by 
Motoyama produces conservative results in Fig. 8 
compared to the other two models, i.e. the flashovers 
occur at higher lightning currents. A similar behavior can 
observed by the method of Pigini in the case of steep 
linear ramp function. The equal-area criterion by Kind 
performs well in both cases. 

− There is a clear inverse correlation between the flashover 
tendency and the tower footing resistance, and a rather 
weak correlation between the flashover tendency and 
tower surge impedance can be observed in Fig. 9. 
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Fig. 9.  Tower surge impedances and measured footing resistances 
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Fig. 10.  Height of towers and crossarms of the 110-kV line 

Another factor influencing the flashover performance of 
the 110-kV insulators is the height of the tower and crossarm 
of the 110-kV line as shown in Fig. 10. 

Taking the probability distribution relation for lightning 
crest current magnitudes according to IEEE [9] 

2.6

1( )

1
31 kA

p i I
I

> =
⎛ ⎞

+ ⎜ ⎟
⎝ ⎠

 (12) 

into consideration, it can be said that at the mostly endangered 
towers #3 and #8 with an average peak value of I = 36 kA, 
40 % of lightning strokes would cause a back-flashover across 
110-kV insulators. 

IV.  MITIGATION OF BACK-FLASHOVERS BY LINE SURGE 
ARRESTERS 

Line surge arresters parallel to the phase insulators of 
110 kV circuits prevent back-flashovers at those towers [18]. 
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Towers #3, #5 and #8 are selected as endangered towers by 
back-flashovers of the 110-kV lines and are equipped with 
line surge arresters, which replace one insulator string of the 
duplex insulator of the double-circuit 110-kV line. The model 
referring to [17] of the selected surge arrester with rated 
voltage of 156 kV and its nonlinear voltage-current 
characteristic are shown in figures 11 and 12, respectively. 

It can be easily checked by the Kind equal-area criterion 
that no flashover can occur across the insulator string parallel 
to the surge arrester, because the voltage across the insulator 
will be limited by surge arresters below U0 in (4).  

 
L0 = 0.307 µH;  R0 = 153.5 Ω; C = 65.1 pF 

Fig. 11. Surge arrester model 
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Fig. 12. Voltage-current characteristic of the surge arrester 

The simulations of lightning strokes with 
200 kA; 3µs / 77.5µsI =  at the towers #3 and #8 confirmed 

also that no breakdown can occur across parallel insulators 
according to the other two flashover models by Pigini et al 
and Motoyama. Due to discharging of the surge arresters (see 
Fig. 13) the voltage of the 110-kV phase conductors 
temporarily increases significantly. Fig. 14 shows voltages of 
phase c at the towers #1, #2, #3, #4 and #5, when a lightning 
stroke with 100 kA; 3µs / 77.5µsI =  hits the top of the tower 
#3. The operating 50-Hz voltage of phase c is at moment of 
the lightning stroke equal to the negative peak value (−90 kV). 
Depending on the amplitude of the discharge current of surge 
arresters, a flashover may take place at other towers, which 
are not equipped with surge arresters. In this respect two cases 
have been studied: lightning stroke to towers #3 and #8, which 
are equipped with line surge arresters for 110 kV. Adjacent 
towers do not contain any line surge arresters. 

The CIGRE current waveform with 3/77.5 µs as lightning 
stroke is used by increasing the amplitude in 5 kA steps. The 
flashover condition is checked by the Kind equal-area 
criterion.  At tower #3, when I > 95 kA and at tower #8, when 
I > 90 kA, a flashover is expected at the adjacent towers 

across the 110-kV phase insulators. 
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Fig. 13.  Discharge current of the six line surge arresters at tower #3  
(no flashover at adjacent towers is assumed) 
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Fig. 14.  Voltages between phase c and the tower at towers #1, #2, #4 and #5 
of the 110-kV line due to discharging of line surge arresters at tower #3. No 
flashover at adjacent towers is assumed. 
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Fig. 15. Waveforms of voltages across 110-kV phase insulators with flash-
overs at towers #2 and #4 (no line surge arresters are installed at those towers) 

Waveforms of the voltage across flashed-over insulators 
are shown in Fig. 15 for the case of lightning stroke to tower 
#3 with 110 kA. At tower #2 the phase b and at tower #4 the 
phases b and c attain flashover. 

An important question is, how well the surge arresters will 
perform in terms of energy absorption. A lightning stroke with 

200 kA; 3µs / 77.5µsI =  is applied as worst-case to the top 
of towers #3 and #8. It is assumed that no line arresters are 
installed at adjacent towers. Consequently, flashover takes 
place in all phases of the 110-kV double-circuit line at 
adjacent towers. Maximum energy absorption computed is 
34 kJ, which is uncritical. 

V.  CONCLUSION 

A systematic flashover analysis has been performed for a 
110-kV double-circuit overhead line, which is a part of a 
multi-circuit transmission route. Two different lightning 
stroke current waveforms have been applied. The back-
flashover performance is estimated by means of three different 
flashover models. The towers at which back-flashover is more 
likely than at others are identified in order to take 
countermeasures like replacement of one 110-kV insulation 
string by a surge arrester at those towers. 
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Multi-circuit tower system is modeled with the graphical 
preprocessor ATPDraw and the simulations are performed 
using EMTP-ATP. It has been shown that line surge arresters 
can be successfully utilized to prevent back-flashovers across 
110-kV phase insulators at endangered towers. For lightning 
stroke current amplitudes greater than 90 kA, flashover may 
occur at the adjacent towers due to discharge current of 
operated surge arresters, when the phase conductors at those 
towers are not equipped with surge arresters. Energy 
absorption of the selected 110-kV line arresters remains 
uncritical. 
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