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 Abstract—This paper presents a new methodology for phase-

to-ground fault detection in primary distribution systems. The 
wavelet transform is the tool used, through the multiresolution 
analysis of the current signals measured at the relay point. 
Traditional tools such as the Fourier Transform and the Short-
Time Fourier Transform have a frequency resolution inversely 
dependent of time resolution, providing a lower level of 
robustness to the fault detection procedure. In this paper, the 
proposed technique is designed and validated through several 
computational simulations in the IEEE 37 bus test feeder. The 
proposed technique is also compared to a Neural Network 
approach, using the same simulations and protection philosophy. 
Test results show that the proposed scheme is an efficient 
methodology for single phase fault detection in unbalanced 
distribution systems, including faults with high impedance. 
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I.  INTRODUCTION 
ISTRIBUTION protection systems should attend specific 
technical requisites in order to maintain system’s 

reliability, such as [1]: selectivity, sensibility, security and 
rapidity. All these aspects are directly related to the fault 
detection process, as it defines how fast, when and for which 
parts of the system the protection system will or won’t 
operate. 
 Thus, the protection system’s overall performance is also 
determined by the fault detection process. To perform the fault 
detection and the system’s protection, several different 
techniques are used. 

 The most used technique in distribution systems is the 
coordination and selectivity of electromechanical protection 
equipments, such as overcurrent relays, circuit breakers, fuses 
and secctionalizers [1]. However, it is not always possible to 
coordinate these equipments, leaving unprotected parts in the 
system. Also, the detection is usually based in overcurrent 
schemes, which are not robust to faults with high resistance 
[1]. 

Currently, microprocessor-based relays can perform all 
these detection procedures and also several others [2]. 
Therefore, higher levels of reliability and security can be 
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easily achieved. However, several fault detection techniques 
used are DFT-based (Discrete Fourier Transform based), in 
which the time resolution is lost because of the high frequency 
resolution. Due to the increasing necessity of precision in the 
protection system devices, the DFT-based schemes are 
becoming nowadays even more limited.  

On the other hand, several digital signal processing (DSP) 
techniques have been studied and developed in the recent 
years, such as neural networks and wavelet transforms. The 
usage of those techniques in fault diagnosis schemes has been 
proposed in several works [3]—[5]. 

The wavelet transform is a robust tool for the fault 
detection, as it evaluates a wide range of frequencies and not 
only one, as in the DFT. Moreover, since it performs a 
multiresolution analysis based in a logarithmic approach, the 
time resolution is suitable for the fault detection procedure, 
enhancing high precision in the process. 

By the use of Wavelet Transforms, this work presents a 
novel fault detection scheme for unbalanced distribution 
systems. The methodology is validated using simulations and 
also a comparison with an existent neural network approach 
for the fault detection process.  

In the second and third sections, the wavelet transform and 
the electromagnetic transients caused by faults are 
respectively introduced. The fourth section presents the 
proposed fault detection methodology. The fifth and sixth 
sections present respectively the case study and the results 
obtained. The conclusions are presented in the seventh 
section. 

II.  DISCRETE WAVELET TRANSFORM 
The frequency analysis of discrete signals is traditionally 

performed using Fourier analysis based transformations, such 
as the Discrete Fourier Transform (DFT) and the Windowed 
Discrete Fourier Transform (WDFT). 

The DFT is known for its high frequency resolution and 
low time resolution, fact that can be partially solved using the 
WDFT. The difference between the DFT and the WDFT is 
that the ladder uses a window to perform the time-frequency 
transformation [6]. The window used is pre-defined and 
provides certain compromise between time and frequency 
resolution. However, the time and frequency resolutions have 
limited precision, controlled by the pre-defined size of the 
window [6]. 

The Discrete Wavelet Transform (DWT) is a frequency 
analysis tool for digital signals that works as the WDFT, using 
a window to perform the transformation. However, the 
window used by the DWT is not static: it suffers dilation and 

D 



translation during the transformation algorithm. 
The DWT is given by (1) [6]—[7]: 
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where x[n] is a discrete signal with n coefficients, g(.) is the 
window function, called the mother wavelet, a and b are 
respectively the scaling and translation parameters, function of 
an integer parameter m (a=a0

m and b=nb0a0
m, with a0 and b0 

as constant parameters). Also, k is an integer variable that 
refers to a specific sample of the discrete signal. 

The used window is called the mother wavelet and there 
are several known mother wavelets. In this paper it is 
necessary to detect singularities (abnormal frequency changes) 
in the current signals with the highest possible precision. In 
order to achieve this characteristic, the mother wavelet choice 
should consider the number of its vanishing moments [8]. 
With more vanishing moments, higher precision can be 
achieved in the singularities detection [8]. However, with 
more vanishing moments, the mother wavelet has also more 
samples, limiting the number of details in which a specific 
signal could be analyzed, since the mother wavelet suffers 
dilation as the details increase. Thus, the mother wavelet used 
in this paper is the Daubechies8 [6]—[10], since it has the 
better relation between number of coefficients and vanishing 
moments. 

The scale parameter originates a logarithmic frequency 
scale, as shown in Fig. 1 [10]. The DWT output is a set of 
details, each of one corresponding to a frequency bandwidth, 
as in Fig. 1. The higher is the detail number, lower is the 
frequency. The first detail has n/2 samples and the dth detail 
has n/2d samples, since for each frequency scale that the DWT 
is computed, the original signal is decimated, leaving a total of 
n points for the signal in the wavelet domain also. 

 

 
 
Fig. 1.  Frequency spectrum using the Discrete Wavelet Transform. 

 
When an interpolation is performed after the decimation of 

the signals in the wavelet domain, the transformation has the 
advantage of being time invariant and is called the Stationary 
Wavelet Transform (SWT) [11]–[12]. The disadvantage is that 
 the SWT is a redundant transformation, leaving n points for 
each scale in the wavelet domain, therefore using more digital 
memory than the DWT. However, this is the transformation 
used in this paper, as the time invariant characteristic provides 
higher time precision to the analysis. 

III.  ELECTROMAGNETIC TRANSIENTS IN POWER SYSTEMS DUE 
TO FAULTS 

A qualitative understanding of the analyzed signals during 
fault occurrence becomes necessary before presenting the 
developed detection methodology. 

Faults are common disturbances in power systems and this 
phenomenon is associated to different natures, such as: 
insulators breakdown, lightning, trees and animals in contact 
with electrical equipments. Due to its stochastic nature, faults 
are also hardly avoidable and its frequency characteristics 
seen from the relay point becomes also different in each fault 
case and distribution system. 

Several aspects, such as the fault location and its resistance, 
the total line length, its impedance and geometry and  also the 
mutual coupling between phases can interfere in the spectra of 
fault induced transients [13]—[14], causing its frequency 
characteristic to be also stochastic, by nature. Thus, fault 
induced transients can vary inside a limited frequency 
bandwidth. However, they are unknown before the fault 
occurrence. This is the main reason for using a wavelet 
domain analysis instead of a DFT-based one. The wavelet 
domain analysis is more adequate to the fault detection based 
in the frequency analysis, as it covers a wide frequency 
bandwidth and not only one frequency value, as the DFT. 

Typically, the fault induced transients are inside a limited 
frequency bandwidth, which corresponds to frequencies from 
0.1 Hz up to 1 kHz, as shown in Fig. 2 [14], where the 
frequency spectrum of common electromagnetic transients in 
power systems are defined. 

 

 
 
Fig. 2.  Frequency spectrum of power system transients. 

IV.  PROPOSED TECHNIQUE 
In this section the proposed phase-to-ground fault detection 

algorithm is presented in four different processes, explained in 
the following subsections, using the theory summarized in the 
earlier sections. 

A.  Base Characteristics Extraction 
Every power system, except for some rare cases, differ 

from all the others by having its own characteristics. Thus, the 
base characteristic of the system performance is used to 
determine the system’s operating condition in steady-state. 

The main information used for fault detection is the digital 
signal’s detail D energy. The interest detail is the detail that 



corresponds to the highest frequency components present in 
the current signals during a fault occurrence. As seen before, 
these frequencies can get up to 1 kHz. Thus, the proposed 
methodology uses the measured energy of the highest 
frequency components in this bandwidth, which corresponds 
to frequencies from 750 Hz up to 1 kHz. Since the signals 
sampling period may vary from application to application, the 
detail D also varies. Moreover, when different mother 
wavelets are used, the interest detail also changes. 

The energy variation is the detection parameter. In this 
way, a base energy could be used, which is the extracted 
characteristic in this process. 

This process is executed while the distribution system is in 
steady state operation, before the detection process, without 
contingencies, in every time the protection engineer thinks it 
is necessary. The procedure is shown in Fig. 3. 
 

 
Fig. 3.  Base Characteristics Extraction. 
 

First, the SWT is executed in the three-phase current 
signals measured at the substation, using 3 cycles of each 
phase, in a 1 cycle window and a quarter cycle of step (a total 
of 9 windows). The energy of each interest detail of the SWT 
is calculated using the Parseval’s Theorem, given by (2) [15]: 
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where X[n] is the nth sample of the transformed signal of the 
Dth detail. 

After, the mean energy of the 9 windows is calculated, for 
each one of the phases. The base energy is the higher value 
among them. The mean energy is used as a parameter because 
even minimally in steady state the current’s signals frequency 
characteristics may vary according to system, time and phase. 
DSP phenomena related to the wavelet filtering in the 
boundaries of the signal can also occur, leading to high 
frequency signals appearing in the DSP algorithm execution 
[16]. The white noise also plays an important role, changing 
the signal’s frequency characteristic. 

B.  Online Characteristics Extraction 
With the base energy of the interest detail determined, the 

fault detection algorithm has conditions to be executed. In this 
part of the process, one cycle current signals measured at the 
substation with one quarter cycle step are used to determine 
the actual system’s operation state. The one quarter cycle step 
is used in order to improve a fast detection scheme, which 
could detect a fault in less than one quarter of a cycle. 

The procedure inputs are the three phase currents. The 
interested detail’s energy of the three phase current signals are 

calculated and normalized by the base energy obtained in the 
first step. The normalized energies for each one of the phases 
are the outputs of this process, which are the inputs of the next 
process, as shown in Fig. 4. 

 
 

 
Fig. 4.  Online Characteristics Extraction. 
 

C.  Fault Detection 
The fault detection procedure is executed using the 

normalized detail D signal’s energy. Fig. 5 shows the steps 
executed in this process. 
 

 
 

Fig. 5.  Fault Detection Process. 
 

The normalized energies are directly compared with a pre-
defined threshold. If the normalized energy of any of the three 
phases reaches the threshold, called minimum detection index, 
k1, a fault state is confirmed.  

The minimum detection index value can be determined by 
the protection engineer criteria and depends on the system and 
protection philosophy. High loads entering the system, 
possibly causing an erroneous operation of the protection 
system, white noise, which inserts high frequency components 
in the measured signals, system’s fault characteristics and the 
security margins to be achieved are important parameters to be 
considered in the determination of k1. 

The use of simulations using electromagnetic transient 
programs (EMTP) are stimulated, as the topology of electric 
power systems is complex and the analysis needed also covers 
a wide range of frequencies. During the simulation procedure, 
the models used should cover all the analysis frequency range, 
in order to provide the highest precision between the real and 
simulated data. 

Fig. 6 shows an example of a phase-a fault case simulated 
in the test system (IEEE 37 Bus Radial Test Feeder) and its 
wavelet coefficients in each detail, including the interest 
detail. During fault occurrence, the high frequency 
components can be easily used to detect the fault. The 
sampling frequency of the signal is of 11580 Hz and the 
Daubechies8 mother wavelet was used, yielding detail 3 as the 
interest detail. 



 
 
Fig. 6.  SWT details during fault occurrence. 

D.  Post-Fault Procedure 
After the fault is detected by the algorithm in the preceding 

procedure, the algorithm enters in the post-fault state of 
operation. This procedure is executed in order to avoid 
successive fault detections for the same fault due to the 
reflections of the traveling waves in the system. The high 
frequency waves tend to continue in the system until they are 
totally suppressed, providing energy to the high frequency 
components, even after the fault detection, since it is executed 
in the first cycle after the fault. 

The post fault procedure combines a new base 
characteristics extraction, an online characteristics extraction 
and the fault detection process itself.  

The base energy previously extracted is momentarily 
substituted by three new base energies, one for each phase of 
the system. These new base energies are the ones calculated 
on each phase in the first cycle after the fault detection, as it is 
the cycle with the highest frequency components due to faults, 
since the traveling waves are attenuated in the system as the 
time passes. 

With the new base energy for each phase, the online 
characteristics extraction procedure in this process normalizes 
the energy values calculated for the interest details, as 
explained in Section IV-B, however with new base energies. 

The fault detection process in the post-fault state is the 
same as described on Section IV-C, except that the index 
previously used, k1, is momentarily substituted by another 
index, k2 (minimum post-detection index). The design of k2 is 
also performed by the protection engineer and must consider 
the same parameters as considered in the design of k1. 

The algorithm exits the post fault state in two different 
occasions: after a pre-defined number of cycles or after the 
three-phase high frequency components energy in the interest 
detail are below the k1·E(A)(B)(C)Norm threshold value, which is 
the threshold value in the pre-fault state. In this process, it is 
used the mean energy of 9 different consecutive windows, 
covering exactly 3 cycles (1 cycle windows, with a step size 
of a quarter of cycle). 

After the algorithm exits the post fault state, it goes back to 
its initial state, using the minimum detection index, k1, to the 

faults detection’s procedure and the previously calculated base 
energy. 

V.  CASE STUDY 
To show the effectiveness of the proposed algorithm, faults 

were simulated using ATP/EMTP Software in the IEEE 37-
bus radial test feeder, fully described in [17]—[18]. This 
feeder is an actual distribution system located in California, 
USA. It is a three-phase system, with nominal voltage of 4.8 
kV, non-transposed asymmetric underground lines, 
unbalanced loads and delta-connected loads. The usual fault 
detection scheme for phase-to-ground faults in this system is 
an overvoltage alarm [19]. The fault detection scheme was 
first tested as an offline tool, in order to understand its 
limitations and to verify its precision. 

A.  Proposed Methodology 
For the design of k1 and k2 variables, each line section had 

3 fault points analyzed, producing a total of 103 fault points. 
Also, the faults were simulated with 5 different fault 
resistances: RF = 0, 10, 20, 50 and 100 Ω, producing a total of 
515 A-g fault cases. With these test cases statistical analysis, 
k1 and k2 values were designed. 

The time-step simulation used was of 192 samples/cycle, or 
11,564 kHz. With this time step and with daubechies8 (db8) 
mother wavelet, the details central frequency of the wavelet 
transform were approximately of: D1 = 3840 Hz, D2 = 1920 
Hz, D3 = 960 Hz and D4 = 480 Hz. Referring to Section III, 
our interest detail is, in this case, the third one, since the 
objective is to analyze the fault induced transients highest 
frequency components. 

All the detection and signal processing routines were 
implemented in Matlab®. The results of the statistical analysis 
are shown in Table I, for details 2 and 3 of the wavelet 
transform. In the 1st window post-fault (one cycle window), 
the fault occurs in ¾ of the analyzed cycle, and in the 4th 
window post-fault, the fault occurs exactly in the beginning of 
the  analyzed cycle, covering the fault induced transients 
highest energy’s case (the first cycle after the fault). 

 
TABLE I 

ENERGY CALCULATED FOR D2 AND D3 OF THE CURRENT SIGNALS MEASURED 
AT THE SUBSTATION [A2·S2] 

 

Phase A Phase B Phase C 
D2 D3 D2 D3 D2 D3  

Steady State 
Min 0.011 0.04 0 0.001 0.008 0.031 
Max 0.011 0.042 0 0.002 0.008 0.033 
Mean 0.011 0.04 0 0.001 0.008 0.032 

 1st Window Post-Fault 
Min 0.011 0.04 0 0.001 0.008 0.031 
Max 616.4 62.1 141.0 15.2 167.8 15.8 
Mean 27.9 4.5 6.8 1.1 7.5 1.1 

 4th Window Post-Fault 
Min 0.011 111.5 0 40.5 0.009 17.6 
Max 64.8k 970.5 15.8k 246.0 16.7k 239.8 
Mean 6.2k 502.1 1.5k 130.4 1.6k 120.7 



With the usage of the SWT, it is possible to analyze the 
details differences, since different details have the same 
number of coefficients. 

From Table I, the 3rd detail’s choice is numerically 
justified, as this is the detail in which the minimum energy 
level suffers its highest elevation during a fault in the faulty 
phase or in the non faulty phases. The minimum energy levels 
are associated with faults in the end of the feeder with high 
resistance. 

With the values from Table I, k1 can be easily determined 
by the relation between the base energy and the 4th window 
post fault minimum energy from D3. The base energy used is 
the worst case, which is the highest energy value in steady 
state: 0.042 ≈ 0.05. Approximating the minimum energy from 
the 4th window post-fault to 100, the relative value becomes 
2000, which yields: k1 < 2000. The designed value for k1 was 
of 500, for validation purposes. 

The minimum post-detection index, k2, is a non-critical 
parameter, and must be always greater than 1. The value 
chosen for the validation tests was 2. 

Moreover, the number of post-faults cycles chosen, in 
which the post-fault procedure is executed, was 6, since by 
this time, the major part of the high frequency components 
should have been sufficiently attenuated. 

 

B.  Neural Networks Approach 
In order to compare the results obtained with the proposed 

methodology, a Neural Network detection scheme, proposed 
in [20], was also tested. 

Using the same 515 simulations used to design k1 and k2 
values, the neural network was trained, using Matlab, using 
the same network topology as [20]. The neural network 
converged in less than 3000 epochs. 

VI.  RESULTS 
 

A.  Proposed Methodology 
To validate the designed parameters of the proposed 

methodology, phase-to-ground faults in the three phases and 
in the 103 fault points of the system were simulated. Also, 
faults with resistance RF = 0, 10, 20, 50, 100, 500, 1000, 1500 
and 2000 Ω were simulated, providing 2781 test cases. All the 
simulated cases presented only one fault, thus, it shouldn’t 
occur any post fault detection. The fault detection and the 
post-fault detection results were analyzed. 

Table II shows the percentage of correct results, 
considering the different processes: detection (parameter I) 
and post-detection (parameter II). The values are relative to 
the number of cases for each fault simulated (103 for each 
fault resistance in each phase). 
 
 
 
 

TABLE II 
RESULTS FOR THE PROPOSED FAULT DETECTION SCHEME 

 

Phase A Phase B Phase C RF 
I II I II I II 

0 100% 100% 100% 100% 100% 100% 
10 100% 100% 100% 100% 100% 100% 
20 100% 100% 100% 100% 100% 100% 
50 100% 100% 100% 100% 100% 100% 
100 100% 100% 100% 100% 100% 100% 
500 100% 100% 100% 100% 100% 100% 

1000 100% 100% 100% 100% 100% 100% 
1500 100% 100% 100% 100% 100% 100% 
2000 100% 100% 100% 100% 100% 100% 

 
Through these results, it is verified that the proposed 

algorithm for fault detection is extremely efficient. It can be 
seen that with the designed values, based on fault simulations, 
in which the higher fault resistance value was 100 Ω, the 
algorithm performed correctly the fault detection for faults 
with at least 2 kΩ, which can be considered a high resistance 
fault.  

The post detection index (II) indicates if an erroneous post 
detection occurred in the studied cases. In the analyzed cases, 
there were no successive detections for the same fault, which 
is the desired result, confirming that the parameters were 
correctly designed for the situation. 

Still, it can be identified a certain generalization tendency 
in the proposed algorithm, disclosing its robustness in relation 
to the fault resistance effects. Moreover, the design developed 
considering phase a to ground faults was expanded for the 
three phases of the system in an efficient way. 

The mean time needed by the algorithm to analyze each 
window with the stationary wavelet transform was of 26.997 
ms, considering all fault cases. This is a very large time for a 
real time application, since the entire algorithm is intended to 
be performed each quarter of cycle, which has a total of 4.17 
ms. However, the algorithm was not implemented in an 
embedded system, which could offer a higher processing 
speed and less time consuming. Moreover, the stationary 
wavelet transform was executed for all the details, replying a 
lot of useless results. The SWT could also be performed only 
for the interest detail, providing highest speed for the 
algorithm. 

B.  Neural Networks Approach 
The same fault cases used to validate the proposed 

methodology were used to validate the trained neural network. 
The results are shown in Table III. 

It can be verified that the neural network scheme did not 
succeeded in the fault detection for the non-trained phases, 
showing its low capacity of generalization in this aspect. 
However, the neural network scheme could achieve accurate 
results for faults with high resistance, such as 1500 kΩ. 
However, these results were not as accurate as the ones 
achieved with the proposed wavelet scheme, since for faults 
with no resistance the neural network also had difficulties to 
detect the simulated fault cases. 



TABLE III 
RESULTS FOR THE NEURAL NETWORKS APPROACH DETECTION SCHEME 

 

RF Phase A Phase B Phase C 
0 96.1% 97.1% 93.2% 

10 100% 100% 37.9% 
20 100% 100% 53.4% 
50 100% 100% 80.6% 
100 100% 100% 74.8% 
500 100% 72% 91.3% 

1000 100% 91.3% 50.5% 
1500 100% 98.6% 0% 
2000 66% 96.1% 0% 

VII.  CONCLUSIONS 
A novel methodology for fault detection in distribution 

systems based in the fault induced transients and the 
multiresolution analysis was proposed in this paper. The usage 
of new tools, such as wavelets, made possible the correct fault 
detection in several studied cases, showing its efficiency and 
robustness to system’s phase and fault resistance designs. 

The proposed methodology is based in the steady-state 
operation of the system, since the configuration adopted in the 
relay parameters are continuously updated. Through the 
present paper it is clearly advantageous the usage of 
simulation tools to design the methodologies parameters. 

The wavelet transform demonstrated to be a very robust 
analysis tool, becoming possible the analysis of the whole 
system’s frequency spectrum during the analyzed 
disturbances.  

On the other hand, a new developed technology to fault 
detection, the neural network, showed to be limited in some 
aspects, as shown previously. 

The wavelet-based fault detection approach described in 
this paper was implemented as a software tool for CEEE-D 
(Companhia Estadual de Distribuição de Energia Elétrica do 
Rio Grande do Sul) and it is currently under testing, being 
used as an offline tool with data from real systems. 
Improvements in the algorithm could be done in order to 
achieve a higher processing speed, becoming possible its 
online usage as a part of the protection system. 
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