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Abstract—The paper deals with the use of the hybrid model to 
compute inter-turn voltages in transformer windings when a 
distribution cable is connected to the transformer. This model 
uses a combination of a single-transmission line model (STLM) 
and a multiconductor transmission line model (MTLM). It is 
shown that the hybrid model can be used with full success for 
computation of inter-turn voltage distribution in layer-type 
distribution transformers. Measured voltages at specific taps are 
compared with the computed voltages when a pulse with a short 
rise time is applied at the transformer terminal. In this work, the 
influence of the cable on the voltage distribution in transformer 
windings will be analyzed.  
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I.  INTRODUCTION 
OMPUTATION of inter-turn voltages in transformers is 
of great importance for the design of transformer 

insulation. During fast surges like lightning and switching the 
transformers, very fast transients take place which result in an 
increase of the inter-turn voltages. Switching operations in a 
gas insulated substation (GIS) are also known to produce very 
fast transient overvoltages (VFTO’s) which are dangerous for 
the transformer insulation. Also, in medium voltage systems 
where vacuum circuit breakers are used [1,2], high-frequency 
oscillations occur which can be dangerous because of their 
short rise time. Another problem is the external resonance 
which occurs when the natural frequency of the cable matches 
the natural frequency of the transformer [3]. Most of the time, 
the greatest problem is the internal resonance which might 
occur when the frequency of the input surge is equal to some 
of the resonance frequencies of the transformer. The 
experience shows that VFTO’s within GIS can be expected to 
have even a rise time of 0,1 μs and an amplitude of 2.5 p.u. 
[4]. The inter-turn insulation is particularly vulnerable to high-
frequency oscillation, and therefore, the study of the 
distribution of inter-turn overvoltages is of essential interest. 
In this work, an accurate computation of voltage transients is 
done by making use of the hybrid model based on simplified 
Telegrapher’s equations. It is verified that this way of 
modeling can also be used for layer type transformers with full 
success. First we consider the situation when an approximated 
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step voltage is applied directly to the transformer winding and 
compute the inter-turn voltages. Then, inter-turn voltage 
computations are accomplished for a medium voltage 
distribution cable connected to the transformer.  

II.  METHODOLOGY  
When every turn in a transformer is represented by a 
transmission line, the computation of the waveforms in each 
turn is done by the modified Telegrapher’s equations 
described through equation: 
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Vt and It are the voltage and current vectors respectively, while 
L is the inductance matrix and C the capacitance matrix. Both 
are square matrices and their order is equal to the number of 
turns in a layer. C0 and E0 denote the capacitance from a turn 
to the transformer static plate and excitation voltage 
respectively. The solutions for the voltage and current in a 
winding section i of the modified Telegrapher’s equations for 
the STLM model are [5]: 
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For the MTLM, the solutions for the voltages and currents in 
each turn in a winding section can be expressed by [5]: 
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Where constants tA and tB  can be calculated by equalizing the 
voltages and currents at the end of one line with the beginning 
of the next line, and ik  is the capacitive distributed voltage, 
which is due to the existing capacitances between the layers 
and between layers and ground. The propagation constant Γ in 
the above voltage equation can be approximated by: 
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where: 
sv  propagation speed of the surge (m/s) 

d  distance between the conductors (m) 
μ  magnetic permeability (H/m) 
σ  conductivity of the conductor (S/m) 
 
The frequency-dependent losses in the winding are taken into 
account in the first term of (4). The tanδ in the second term 
represents the dielectric losses and is chosen to be 0.05. This is 
the maximum value that tanδ can have for the chosen 
insulation. The last term is the phase shift during the 
propagation. The characteristic impedance iz of a turn in layer 
i can be estimated by: 
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where a  is the length of a turn in the winding section in 
meters. C0 and C1 form the static capacitances [6], K are 
capacitances between the turns.  
 
Because of the frequency dependence of the transformer 
parameters, the equations in (1) are solved in the frequency 
domain. The observed frequency range is from 0 up to 100 
MHz. This frequency range is divided into equal steps of 10 
KHz, so there are 10001 frequency points in total. For each 
frequency step, we calculate the propagation constant and the 
characteristic impedance using (4) and (5) respectively.  
 
The Hybrid Model is applied in the following way. First, the 
transformer windings are divided into groups. For simplicity 
we choose the same number of groups with a same number of 
turns within a group. Then, the voltages at the end of each 
group are calculated by applying the STLM model. This 
means that a layer is considered as one transmission line. The 
constants tA and tB  in (2) are determined by using the fact 
that the voltage at the end of the layer is equal to those at the 
beginning of the next layer.  This result in a set of equations in 
matrix form [6]:   
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The vector with constants in (6) can now be solved by taking 
the inverse of the matrix. With these constants, the voltages 
transfer functions of the layers can be computed using (2) by 
taking the source equal to unity. The voltages are then just the 
multiplication of these transfer functions with the input 
excitation function. Knowing the voltages at the beginning and 
at the end of each layer, the MTLM can be applied by taking 
into account that each turn is now a separate line. This method 
significantly reduces the number of equations and the problem 
is solved in two steps. The dimension of the C matrix in this 
case will be equal to the number of turns in a specific group. 
The computation of the turn voltages is performed in a similar 

way by application of (3) for each turn [6].  
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The elements of (6) and (7) are given in the Appendix. The 
size of this matrix will be twice the number of turns. The 
vector with constants in (7) can be determined in a similar way 
as in the STLM. Then the turn voltages need to be transformed 
back to the time domain by applying the Modified Inverse 
Fourier Transform:                                          
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For an accurate time domain response, the smoothing 
constant b , the interval of integration and the step frequency 
size must be chosen properly [7]. With the computed results in 
the time domain, the inter-turn voltages can be obtained easily 
taking the difference between the turn voltages. The used 
algorithm is depicted in Fig. 10 in the Appendix [5]. 
 

III.  VERIFICATION OF THE MODEL 
The studied transformer is a 15kVA single-phase layer-type 
distribution transformer, with a transformer ratio 6600V/69V. 
This transformer consists of 15 layers with 200 turns in each 
layer. In Table 1 the available data of the studied transformer 
is shown.  
 

TABLE I 
TRANSFORMER DATA 

Inner radius of HV winding 73.3 mm 
External radius of HV winding 97.4 mm 
Inner radius of the LV winding 51 mm 
External radius of LV winding 67.8 mm 
Wire diameter 1.16 mm 
Double wire insulation 0.09 mm 
Distance between layers 0.182 mm 
Coil’s height 250mm 
Top / bottom distance from the core  10 mm 
Dielectric Permittivity of oil 2.3 
Dielectric Permittivity of wire insulation 4 

 
 

To verify the model, we compare some measurements with 
computations. Fig. 1 shows the comparison between the 
measured and computed voltage wave forms at specific turns. 
Voltages are measured at the 100th and the 200th turn which 
correspond to the middle turn and last turn of the first layer, 
and 400th turn which correspond to the last turn of the second 
layer. There is a good agreement between the measured and 
computed results. 

 



 
Fig. 1. Computed and measured voltages at the layers. 

 
The time responses are computed for the first 2 μs with an 
approximated step function with a rise time of 100 ns. Figures 
2 and 3 show the inter-turn voltage distribution in the first 20 
turns and from 120th to 140th turn in the first layer. Figures 4 
and 5 show the computed results of the voltages at specific 
turns in the second layer. 

 
Fig. 2.  Computed inter-turn voltage distribution of turn 1-20 in the first layer. 

 
Fig. 3.  Computed inter-turn voltage distribution of turn 120-140 in the first 
layer. 

 
Fig. 4.  Computed inter-turn voltage distribution of turn 1-20 in the second 
layer. 

 

 
 

Fig. 5.  Computed inter-turn voltage distribution of turn 120-140 in the second 
layer. 

IV.  CABLE MODEL  
The cable model is represented in a way to determine the 
propagation constant and eventually the transfer function. In 
[8], high frequency measurements on this type of XLPE cable 
are done to extract the material properties. The results of these 
measurements are fitted by two Cole-Cole functions and a low 
frequency term with the following dielectric response model: 
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This means that the properties of the materials of the cable are 
modeled by a complex permittivity. Expression (9) is the 
dielectric relaxation model that describes the permittivity in 
the frequency domain. The last term accounts for the 
properties at low frequencies. The values for the parameters 
for the dielectric relaxation used in (9) are given in Table 2 
[8]. The time constants 1τ  and 2τ are the characteristic 
relaxation times of the medium. A1 and A2 are amplitude 
factors which are the differences between the low frequency 
and high frequency permittivities of the material. The factors 
α1 and α2 are mathematical factors denoting the angle of tilt. 
The low- frequency conductivity of the material is modeled by 
σdc. Table 3 does not contain the parameters of the XLPE 



insulation material. This material has been modelled by 'ε = 
2.3 and ''ε = 0.001 [8].  
 
 

TABLE 2 
DIELECTRIC PARAMETERS  

Parameter Inner Outer Outer-outer 
1τ  (s) 61 10−×  71 10−×  85 10−×  
2τ (s)   94 10−×  94 10−×  83 10−×  

A1 500 215 800 
A2 360 170 1000 
α1 0.3 0.3 0.3 
α2 0.3 0.3 0.3 
σdc   (mS/m) 6 5.5 800 

 
 
The dimensions of the used cable are shown in Table 3. The 
studied cable consists of an aluminium conductor, an inner 
semi-conducting layer over the conductor, the XLPE 
insulation, an outer semi-conducting layer, an outer-outer 
semi-conducting layer and a copper conductor screen.  
 
 

TABLE 3 
CABLE DIMENSIONS 

Type YMeKrvaslqwd 6/10 kV 
Length (m) 100  
Inner conductor diam. (mm) 17.1 
Inner semicon  (mm) 1 
Insulation XLPE  (mm) 3.4 
Outer semicon  (mm) 0.5 
Outer-outer semicon  (mm) 0.5 
Copper wire shield  (mm) 1 
Outer sheath (mm) 69  

 
 
 
The aluminum conductor and the copper conductor screen 
form the total series impedance given by [8]: 
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The first and last terms of (10) accounts for the resistance and 
the internal inductance of the conductor and the copper screen 
respectively, which depends on the frequency due to the skin 
effect. The second term represents the geometric inductance of 
the cable. The semi-conducting layers and the XLPE 
insulation can be seen as admittances which are connected in 
series. The admittance of a semi-conducting layer i is 
expressed by: 
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where kε  is the complex permittivity from (9) and can be 

written as: 
 
                                 ( ) '( ) ''( )jε ω ε ω ε ω= −                            (12) 
 
The total admittance of all n layers together is then shown by: 
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The propagation constant can be derived from the total 
impedance and admittance following: 
              ( ) total totalY Z jω α βΓ = = +               (14) 
 
In (13) α is the attenuation constant and β is the phase 
constant. The propagation speed sv is given by: 
 

                   sv ω
β
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This propagation speed in frequency domain is shown in Fig. 
6. 
  

 
 Fig. 6.  Calculated propagation speed in the cable. 
 
The frequency dependence of the cable transmission 
parameters results in a transfer function in the frequency 
domain. We consider the cable as a transmission line so the 
Telegrapher’s equations can be applied. To solve these 
equations we define two boundary conditions. At the sending 
end of the cable (terminal) the voltage is equal to the source 
voltage, say g(t). When the length of the cable is infinite, the 
voltage wave is completely damped out. We can write for 
these conditions: 
  
                                           (0, ) ( )V t g t=                              (16)  
                     ( , ) 0V t∞ =                                 (17) 

 
At time instant zero, the voltage at the beginning of the cable 
is zero so for the initial condition we write: 
                   ( ,0) 0V x =             (18) 
 



Using these conditions the particular solution of the 
Telegrapher’s equations for the voltage wave in the cable in 
the frequency domain is: 
               ( )( , ) ( ) xV x j G j e ωω ω −Γ=                    (19) 
 
In (18) ( )ωΓ is the propagation constant calculated by (13) and 

( )G jω denotes the source voltage in frequency domain. From 
(18), it follows that the transfer function in frequency domain 
of the cable is equal to: 
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V.  COMPUTATION METHODOLOGY WITH CABLE ADDED 
The inner conductor of the cable described is considered to be 
connected to the transformer primary winding. With the cable 
transfer function derived in previous section the computation 
model can be described. In Fig. 7 the block diagram of the 
model used to obtain the inter-turn voltages in the situation 
with the inter-connected cable is depicted.  
 

 
Fig. 7. Block diagram of the cable connected to the transformer winding. 
 
In this figure:  
 
Hcable (jω)   is the cable transfer function shown by (20) 
Htrafo (jω)   is the transformer transfer function  
E0(jω)          is the excitation voltage function 
V(jω)           is the voltage at the transformer  
 
Depending on which computation is performed (STLM) or 
(MTLM) the output voltage ( )V jω refers to the voltage at a 
layer or at a turn of the transformer. The transfer functions of 
the transformer are already known from previous situation 
without cable. The total transfer function of the inter-
connected cable in series with the transformer is simply the 
multiplication of both transfer functions. Like the situation 
without cable, the input excitation voltage is set equal to unity 
to get the transfer function in frequency domain at the output 
(impulse response).    

VI.  COMPUTATION RESULTS WITH CABLE ADDED 
For the situation with cable added, there is no comparison of 
computations with measurements as it was in the case without 
cable. The only verification are the similarities between the 
computed and measured characteristic impedance of the cable 
(about 14 Ohm) and propagation delay. In Figures 8 and 9 the 
inter-turn voltage distributions for turns 1-20 and turns 80-100 
respectively of the first layer are shown. The computed 
propagation time can be read from the figures and is about 0.6 
μs. The peak value of the inter-turn voltage is higher than in 
the situation without cable.  
 

 
Fig. 8.  Computed inter-turn voltage distribution of turn 1-20 in the first layer 
with inter-connected cable. 

 
 

 
Fig. 9.  Computed inter-turn voltage distribution of turn 80-100 in the first 
layer with inter-connected cable. 

VII.  CONCLUSIONS 
The hybrid model can be used with full success for 
determination of voltage distribution in layer-type transformer 
windings. This was verified on an actual transformer. 
Computed voltage transients show good agreement with 
measurements. The cable is modeled by extracting its transfer 
function and taking into account a complex dielectric 
permittivity. Different results for an input step function are 
presented with and without applying a cable between the 
source and the transformer. It is remarkable that the peak 
inter-turn voltage for the situation with cable is just increased. 
A reason for this is because there will occur reflection when 
the traveling wave reaches the transformer terminal, caused by 
the difference in characteristic impedance of the cable and the 
transformer winding section. The reflected wave will be added 
to the incident wave. As a result, the voltage amplitude at the 
transformer terminal can increase significantly. As a 
consequence, the inter-turn voltage will also be higher.  

VIII.  APPENDIX 
The elements [5] of the sub matrices in (6) for Nc coils are   
 
Sub-matrix AU [(Nc+1)×Nc]: 
AUi,i= -1, for i≠1 and AUi,i=1, for i=1 
AUi,i-1=exp(-Γi-1li-1), for i=2,3,…,Nc+1 



AUi,j=0, otherwise    
 
Sub-matrix BU [(Nc+1)×Nc]: 
BUi,i= -1, for i≠1 and AUi,i=1, for i=1 
BUi,i-1=exp(Γi-1li-1), for i=2,3,…,Nc+1 
BUi,j=0, otherwise    
 
Sub-matrix AI [(Nc-1)×Nc]: 
AIi,i= exp(-Γili), for i=1,2,…, Nc-1 
AIi,i+1=-zi/zi+1, for i=1,2,…, Nc-1 
AIi,j=0, otherwise 
 
Sub-matrix BI [(Nc-1)×Nc]: 
BIi,i= -exp(Γili), for i=1,2,…, Nc-1 
BIi,i+1=zi/zi+1, for i=1,2,…, Nc-1 
BIi,j=0, otherwise 
RU1,1=(1-k1)E0, RUi,1=(ki- ki-1)E0, for i=2,3,4,..,Nc and  
RUi,1=-kiE0 for i=Nc+1 
RI i,1=0, for i=1,2,3,…,Nc+1 
 
For a particular coil with N turns, the matrix in (6) is of order 
2 2N N× and the elements are 
 
Sub-matrix MA [(N+1)×N]: 
MAi,i=1, for i=1 and MAi,i= -1, for i=2,3,…,N    
MAi,i-1=exp(-Γa), for i=2,3,…,N+1 
 
Sub-matrix MB [(N+1)×N]: 
MBi,i=1, for i=1 and MBi,i= -1, for i=2,3,…,N    
MBi,i-1=exp(Γa), for i=2,3,…,N+1 
 
Sub-matrix MC [(N-1)×N]: 
MCi,i=Ci+1,i-Ci,iexp(-Γa) for i=1,3,…,N-1   
MCi+1,i=-Ci+1,iexp(-Γa), for i=1,3,…,N-2   
MCi-1,i=Ci,i-Ci-1,iexp(-Γa) for i=2,3,…,N   
MCi-1,i+1=Ci,i+1 for i=2,3,…,N-1 
 
Sub-matrix MD [(N-1)×N]: 
MDi,i=Ci+1,i+Ci,iexp(Γa) for i=1,3,…,N-1   
MDi+1,i=Ci+1,iexp(Γa), for i=1,3,…,N-2   
MDi-1,i=-Ci,i+Ci-1,iexp(Γa) for i=2,3,…,N   
MDi-1,i+1=-Ci,i+1 for i=2,3,…,N-1 
 
In the above expressions, i il N a= is the length of the i-th layer. 
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Fig. 10.  An algorithm for inter-turn voltage computation. 
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