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 Abstract-- In this paper, the frequency domain modeling of a 

multiconductor line illuminated by a nearby lightning stroke is 
described, considering also variations of the line parameters 
along its length (nonuniform line case). Modeling of the 
illuminated line is based on Taylor’s formulation, while the 
incident electromagnetic field is described following Master and 
Uman’s expressions. The numerical Laplace transform algorithm 
is used for the frequency-time transformation required. 
Comparison with an experimental result previously published is 
provided for an initial validation of the method. As a second 
application example, a test case is used to analyze the effect of the 
point of impact on the magnitude and waveshape of the transient 
overvoltages obtained. The effect of line nonuniformities is also 
discussed.   
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I.  INTRODUCTION 
HE effect of lightning induced overvoltages in 
transmission and distribution lines can be classified, 

according to the point of impact, in direct and indirect 
lightning phenomena. Although, as expected, direct lightning 
strokes produce higher overvoltages, the incident 
electromagnetic field from nearby lightning strokes can still 
be of importance for the design of insulation and protection 
elements, particularly for the voltage level of distribution 
lines, being also a much more frequent phenomenon. 

In a more general sense, a transmission line excited by an 
incident electromagnetic field from any source is known as an 
illuminated line. Several researchers have modeled and 
analyzed this problem for power and electronics applications 
[1]-[10]. Formulations proposed by Taylor [1], Agrawal [2] 
and Rachidi [3] are the most commonly applied to this date. 

This work describes the modeling of an illuminated 
multiconductor line in the frequency domain, considering also 
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variations of the line parameters along its length (nonuniform 
line case). The modeling is based on Taylor’s formulations, in 
which the incident field is approximated by distributed 
sources connected along the line’s length. Here, following the 
procedure described in [1], [10], the technique is reduced to 
lumped current sources connected only at the line ends. This 
leads to a substantial simplification of the analysis without 
losing accuracy of the results. 

The incident electromagnetic field representing the nearby 
lightning stroke is computed from the formulation described 
by Master and Uman [4], which is basically dependent on 
variables related to the point of impact and the return stroke 
current. However, the usual integro-differential form of the 
equations in time domain is replaced by a more convenient 
algebraic form in the frequency domain. Once the 
electromagnetic field is obtained, the sources required by the 
model can be included. The numerical Laplace transform 
algorithm is used for the frequency-time transformation 
required [11]. 

Performance of the resulting method is initially validated 
by comparison with experimental results from a reduced-scale 
model reported in [9]. Then, the effect of the point of impact 
on the magnitude and waveshape of the transient overvoltages 
at the line ends is analyzed on a test case. The differences 
obtained when considering line nonuniformities are also 
discussed.   

This work is intended as an extension of the capabilities of 
frequency domain analysis tools, which are believed to be a 
valuable addition to the well-known time domain analysis. 

II.  MODELING OF THE ILLUMINATED TRANSMISSION LINE 
According to Taylor’s formulation [1], [10], a transmission 

line excited by an incident electromagnetic field (illuminated 
line) can be described by means of the inclusion of distributed 
series voltages sources and shunt current sources along the 
line’s length. For a multiconductor line, the Telegrapher 
equations are defined in Laplace domain as follows 
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where s is the Laplace variable; V(z,s) and I(z,s) are the 
vectors of voltages and currents along the propagation axis z; 
Z(z,s) and Y(z) are the matrices of series impedances and 
shunt conductances per unit length, given by Z=R+sL and 
Y=G+sC respectively. It is noticed that, for the general 
nonuniform line case, these matrices are a function of z. Also, 

T



due to skin effect in conductors and in ground plane, the 
impedance matrix is frequency dependent. On the other hand, 
VF and IF represent the vectors of distributed sources, which 
are related to the incident electromagnetic field as [3] 
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where hi(z) is the height of the ith conductor; Ey,i(z,s) and 
Bx,i(z,s) are the vertical electric and transversal magnetic field 
components of the ith conductor in the Laplace domain, 
respectively. These variables are also a function of z for the 
general case of a nonuniform line. Besides, Ez,i(0,s) is the 
horizontal electric field at ground level, which is due to the 
finite ground conductivity [3]. 

From the concept of the matrix exponential and the 
application of modal decomposition, solution to (1) for a line 
segment Δz in terms of the chain matrix ),( szΔΦ  is given by  
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Ψ is the phase domain constant propagation matrix of the line 
segment, defined as 

 1−= MλMΨ  (5) 

M and λ are the eigenvector and eigenvalue matrices of the 
matrix product Z(z,s)⋅Y(z,s), respectively, and Y0 is the 
characteristic admittance matrix of the line segment, computed 
as follows:  

 ΨZY 1
0 ),( −= sz  (6) 

Equation (3) relates voltages and currents from one end of the 
line segment with the same variables on the other end, 
considering the same direction of the current in both ends.  If 
the segment is electrically small, the integral in (3) can be 
approximated as 
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Fig. 1 Representation of the illuminated line by means of lumped equivalent 
sources [5] 
 

From (3) and (7), an illuminated line can be described 
dividing the line in M electrically small segments of length Δz 
and including the sources defined in (2) between each of the 
segments. Moreover, applying the boundary conditions z=0 y 
z= l , where l  is the total line length, an equivalent 
representation can be obtained, in which the incident field is 
included by means of lumped sources connected only at the 
line’s far end (Fig. 1). This representation is obtained adding 
the vector of distributed sources at each step of the cascaded 
connection of the M chain matrices; this is: 
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where ( )iΦ  is the chain matrix of the ith line segment. The first 
term on the right hand side of (8) corresponds to the cascaded 
connection of chain matrices of the unexcited line. Since each 
chain matrix can be different from the others, variation of the 
line’s electrical parameters with its length can be directly 
considered (nonuniform line case). If the line is considered as 
uniform, this term can be replaced by the chain matrix of the 
complete line. On the other hand, the second term on the right 
hand side of (8) is defined as 
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It can be noticed that, when 0→Δz , eq. (9) can be 
expressed as a convolution in z between the vector of 
distributed sources and the chain matrix of the line; this is: 
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Further algebraic manipulation of (8) results in the 
equivalent nodal representation described in (11), where the 
direction of I( l ,s) has been reversed (nodal analysis considers 
injected currents). In this case the incident electromagnetic 
field is represented by means of current sources connected at 
both ends of the line: 

  ⎥
⎦

⎤
⎢
⎣

⎡
+⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

−
=⎥

⎦

⎤
⎢
⎣

⎡
),(
),0(

),(
),0(

),(
),0(

s
s

s
s

s
s

sc

sc

RRSR

SRSS

lll I
I

V
V

YY
YY

I
I

 (11) 

 
 
 
 



Elements of the nodal admittance matrix are given by 
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Current sources at the line ends are defined as follows: 
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where 11Φ , 12Φ , 21Φ  and 22Φ  are the sub-matrices of the 
chain matrix for the complete line: 
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Nodal form given by (11) defines the illuminated line 
model by means of the nodal admittance matrix of the line 
without excitation, and the connection of current sources at 
the line ends representing the incident electromagnetic field 
due to the nearby lightning stroke. Therefore, there are 3 
fundamental aspects for the correct application of the model: 

1. Computation of the line’s electrical parameters, from 
which the nodal admittance matrix is obtained: Since 
the analysis is performed in the frequency domain, 
skin effects in conductors and in ground plane can be 
directly considered when computing Z. For this 
purpose, the concept of complex penetration depth is 
applied [14]. In the case of the ground impedance, 
the Sunde approximation is considered, which has 
shown better results for low ground conductivity 
[15]. 

2. Computation of the incident electromagnetic field 
from the relevant variables of the lightning stroke: 
Formulation by Master and Uman is applied [4], 
considering also de Curray-Rubenstain correction for 
ground of finite conductivity [15]. The integro-
differential set of equations defined in time domain is 
replaced by a more straightforward algebraic form in 
the frequency domain. The technique is described in 
Section III. 

3. Frequency-time transformation of the solution: The 
numerical Laplace transform, which has been 
previously used in several works with good results 
(see for instance [10]-[13]), is applied in this work. 

III.  COMPUTATION OF INCIDENT ELECTROMAGNETIC FIELD 
Fig. 2 shows the geometrical configuration of a 

transmission line excited by an incident electromagnetic field 
due to a nearby lightning stroke.  

Assuming ground as a perfect conductor, Master and Uman 
defined the components of electric and magnetic field 
produced by a differential segment of the lightning channel as 
[4]: 
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Fig. 2 Geometrical configuration of the transmission line-lightning channel 
arrangement 
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where h is the line’s height, r is the horizontal distance 
between a point of the line along the z axis and the lightning 
channel and c is the velocity of light in free space. The 
lightning channel current propagating towards the cloud, 
i(y,t), is defined from the MTLE model as [5]: 

 )/,0()exp(),( υα ytiytyi −−=  (16) 

i(0,t) is the channel current at ground level (initial current), α 
is the attenuation constant of the current as it propagates in 
vertical direction (towards the cloud), and υ is the velocity of 
the return current. Transforming (15) to the Laplace domain 
and integration along the lightning channel and its image, it 
yields:  
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where H is the cloud’s height and ),( syI is the Laplace 
domain image of the lightning channel current, given by: 
 ),0()/exp()exp(),( sIsyysyI υα −−=  (18) 

Integrals defined in (17) are evaluated by means of an 
algorithm of numerical integration. However, until now 
ground has been considered a perfect conductor. In order to 
consider ground of finite conductivity, Cooray-Rubinstein 
expression is applied [15]: 
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where ),,(~ syrEr  is the horizontal electric field modified by 
considering the ground resistivity ρg, εrg is the relative ground 
permittivity, and B(r,0,s) is the magnetic field at ground level 
for perfectly conducting ground. Vertical electric field is 
modified in a similar manner. 

IV.  APPLICATION EXAMPLES 

A.  Comparison with an experimental result 
As a first example (and a means of validation), the method 

described in this paper is applied to reproduce the result from 
an experimental measurement on a reduce-scale model 
reported in [9]. The experimental setup consists of a simple 2 
cm diameter, single conductor, 10 m high overhead line. The 
line is excited by the field of a return stroke current model 
located 70 m away from the line and approximately 
equidistant from the line terminations. The current is 
approximated at ground level by a triangular waveform with 
front time of 2 μs and time to half-value of 85 μs. For the 
example a magnitude of 34 kA is considered.  

Interconnected aluminum plates were used to form the 
ground plane, therefore it is assumed as a perfect conductor. 

Fig. 3 shows the waveform obtained with the frequency 
domain model presented in this work, and its comparison with 
the experimental measurement. A high agreement between the 
waveforms can be noticed. 

B.  Test case: Variation of the point of impact on a 3-
phase line considering sagging between towers 

In this example, transient overvoltages due to a nearby 
lightning stroke on a 3-phase line with horizontal 
configuration are analyzed. Ground wires are not considered 
in the tower arrangement. Main characteristics of the line are 
listed in Table I.  
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Fig.3 Comparison between the results from frequency domain analysis and the 
measurement reported in [10]. 

 
Table I. Transmission line data for example B 

 

Data Value 
conductor radius 7.5 mm 
height at towers 10 m 

height at midspan 6.5 m 
distance between towers 200 m 

conductor resistivity 3.21×10-8 Ω-m 
ground resistivity 100 Ω-m 

distance between phases 2 m 
 
The line is matched at both ends to avoid reflections. 

Electric and magnetic field components are computed from 
(17), considering also the modification given in (19) for finite 
ground conductivity.  

The channel current at ground level considered for this 
example is a superposition of 2 Heidler functions, which has 
shown good agreement against field measurements. 
Parameters of the waveform can be found in ref. [5]. 

Simulations were performed for 3 different values of the 
point of impact: P(25,50), P(150,70) and P(100,100), 
according to the arrangement shown in Fig. 4, in which xp is 
the distance between the lightning stroke channel and the 
middle conductor (phase b). Coordinate P(0,0) corresponds to 
node S of the line. 

 Figs. 5(a), (b) and (c) show the overvoltages at both line 
ends for the coordinates aforementioned. The differences in 
time delays and maximum overvoltages at nodes S and R of 
the line are consistent with the differences in the points of 
impact considered for the simulations. 
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Fig.4 Coordinates of the point of impact. 
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Fig.5 Overvoltages obtained at the line ends for different points of impact of 
the lightning stroke: (a) P(25,50), (b) P(150,70), (c) P(100,100). 

 
In addition, the effect of considering sagging between 

towers for this example is examined. Simulation for 
coordinates P(25,50) is repeated considering the line as 
completely uniform (height at towers = height at midspan = 10 
m). Fig. 6 shows of the comparison for node S. An important 
difference in magnitude can be noticed. The maximum 
overvoltage at all phases assuming a uniform line is 
approximately 18% higher than considering the sagging 
between towers. 
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Fig.6 Overvoltages obtained at node S for point of impact P(25,50),  

V.  CONCLUSIONS 
In this paper, a nonuniform multiconductor model of an 

illuminated transmission line has been described, applying a 
frequency domain approach. The model allows the inclusion 
of an incident electromagnetic field by means of lumped 
current sources connected only at the line ends. The particular 
case of a line excited by a field produced by a nearby 
lightning stroke is analyzed. For that purpose, a technique in 
the frequency domain to compute such field was implemented. 

The model was initially validated by comparison with an 
experimental measurement on a reduced-scale model 
previously published, achieving high agreement between 
waveforms. 

Then, the model was applied on a test case consisting of a 
3-phase line with horizontal tower configuration. Different 
values of the point of impact of the lightning stroke were 
considered, in order to observe the differences in time delays 
and magnitudes of the overvoltages at the line ends. Besides, 
an additional simulation showed that neglecting the sagging 
between towers can result in an important overestimation of 
the maximum overvoltages.  
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