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Abstract-- This paper presents the theory and methods used to 

create a tool for the steady-state and time-domain modeling of the 
inductive and capacitive coupling between multiple neighbouring 
electrically conductive structures. Several different types of 
overhead or underground structures can be modeled such as lines, 
cables, telecommunication lines, pipelines, metallic fences or other 
generic structures. First each structure’s impedance and 
admittance matrices are computed using their geometrical and 
electrical characteristics. Then system matrices are assembled 
which include the mutual influence coefficients between each 
conductor of each structure. A robust modal decomposition 
algorithm is implemented that will handle all cases even when 
repeated eigenvalues are found, so that a pi-exact representation 
of the coupled system can be created. The model is compiled as a 
COM library so that it can be used with a commercial simulation 
software. 
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I.  INTRODUCTION 

Nowadays power structures are omnipresent in the 
landscape, snaking their way across long distances. Because of 
the strong AC currents going through the conductors, these 
structures can generate electro-magnetic fields that have the 
potential to influence neighbouring parallel running conductive 
structures. Modeling and analyzing this coupling is very 
important. It can pose serious security risks, for example due 
to the voltage induced on a metallic fence. Induced noise on a 
telecommunications line can also cause serious reliability 
issues. 

While there exist a few specialized software that model the 
coupling between power structures and neighbouring 
installations, most are either dating or are specific to a certain 
type of installation. The problem with older software is they 
often lack flexibility and are not supported anymore, or lack 
precision due to the limited computing power available when 
first developed. More specialized software will be great at 
doing one thing, such as computing the noise level induced on 
a telecommunications line by a power line, but do not offer 
any other modeling capability. 

We therefore created a tool to model the coupling between 
several different types of electrically conductive structures 
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such as overhead power lines, underground cables, 
telecommunication cables, pipelines or other generic metallic 
structures. Furthermore, this model can also be used to 
accurately model the electrical characteristics of a lone 
structure if so desired. First we compute each structure’s 
impedance and admittance matrices using their geometrical 
and electrical characteristics. Then we assemble system 
matrices which include the mutual influence coefficients 
between each conductor of each structure. The model can 
output the R, L, G and C system matrices for a steady-state 
analysis, or create an exact-pi representation of the coupled 
system for a time-domain simulation. 

II.  IMPLEMENTATION 

We elected to implement the model in the Matlab 
environment, allowing us to make full usage of this powerful 
tool’s built-in toolboxes and matrix manipulation functions. 
Furthermore, since this model is to be integrated in a 
simulation software such as EMTPWorks, we compiled the 
model as a Microsoft Component Object Model, essentially a 
registered DLL object which can be accessed from any 
executable program. We can therefore use the Javascript 
engine provided in EMTPWorks to call the object with our 
data, perform the model computation and load the result into 
circuit elements. 

III.  I NPUT DATA 

The modeled structures can be of different nature, such as 
overhead transmission lines, aboveground or underground 
cables, pipelines, telecommunication lines or cables, metallic 
fences or of some other generic nature, and each can include 
one or more conductors. Power structures can be labeled either 
as disruptive or disrupted, depending on whether they 
influence, or are influenced by, other structures.  Other types 
such as telecommunication lines, pipelines, fences, etc… can 
only be labeled as disrupted. We created input forms for each 
of these structures in the EMTPWorks environment,  through 
which the user specifies its electrical and geometrical 
parameters. For a generic structure, the user must specify 
directly the per-unit-length R’, L’, G’ and C’ matrices as well 
as its geographical location. 

When computing the coupling between them, the model 
assumes that all structures are parallel and of the same length 
in order to apply the transmission lines theory. To ensure this, 
we use a so-called ‘decoupage’ algorithm that takes as input 
the geographical coordinates of all structures involved and 
creates groups of smaller, parallel subsegments. All 
subsegments from disrupted structures within the influence 



area of a disruptive structure are converted to subsegments 
parallel to this structure to form groups, which may contain 
one or more disrupted or disruptive subsegments. 

 

 
Fig. 1. Coupled structures geographical layout (viewed from above) 

 

Fig. 1 shows a power line L1 running close to a 
telecommunications cable T1. Since the two structures are not 
exactly parallel to each other, they must be divided into groups 
with parallel subsegments as show in Fig. 2. The mean 
distance between the two subsegments is kept. 

 

 
Fig. 2. Coupled structures parallel equivalents, assembled into groups 

IV.  STRUCTURE MODELING 

For each type of structure, we must determine its per unit 
length impedance matrix 

= + ωZ ' R' j L '  (1) 
and per unit length admittance matrix  

= + ωY ' G' j C'  (2) 

A.  Overhead Lines 

The per unit length series impedance matrix Z’ is formed of 
the diagonal self impedance terms and the mutual coefficients 
between conductors. The self coefficient are given by 

= +ii int ernal earthZ ' Z ' Z '  (3) 
where Z’internal is the surface impedance of the conductor 

obtained from the skin effect formula and given with  modified 
Bessel functions [1]. The earth return impedance and the 
ground return mutual impedance are found using the Deri-
Dubanton [2][3] formulas : 
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and hi and hj are the height of conductors i and j, r the 

conductor radius, xij the horizontal separation between the 
conductors and dij the total distance between them. µ is the 
insulation permeability and ρ the conductor resistivity. 

The per unit length admittance matrix for overhead lines is 
assembled from the conductance G’ and capacitance C’ 
matrices. We can consider that the influence of the shunt 
conductance G’ is negligible on lines, except at low 
frequencies approaching DC where it is estimated at 0.2x10-12 
S/m. The capacitance matrix is obtained from the inverse of 
the potential matrix P’, with the self and mutual coefficients of 
P’ computed using 
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Where ε0 is the permittivity of free space, dij the distance 
between two conductors and Dij the distance between one 
conductor and the image of the other in the ground. 

B.  Overhead / underground cables 

The cables parameters of a coaxial arrangement are derived 
as equations for coaxial loops, each loop being formed with an 
inner conductor and outer conductor as return. The outermost 
conductor uses the earth for return. Each loop equation 
therefore has the form 

= + +loop inner insulation outerZ' Z' Z ' Z '  (9) 
Where the insulation impedance is given by 

ωµ=
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With r and q respectively the outer and inner insulation 
radii. 

The internal impedance and the mutual impedance of a 
tubular conductor are function of frequency due to the skin 
effect, and are found with modified Bessel functions [1]. 

For above ground cables, the earth return impedance is 
computed the same way as for lines. When cables are 
underground, the mutual and self earth return impedance is 
computed using the notion of complex depth [4] with : 
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where ℓ  is the vertical distance between conductor i and 
the image of conductor j in the air, and x the horizontal 
distance between the conductors. K0 is a modified Bessel 
function to compute the skin effect, and m = p-1 as defined 
previously 

To use the equations in a form suitable for EMTP models, 
we must transform the loop voltages and current to phase 
quantities knowing that Vphase = Vinner – Vouter and the phase 
current Iphase is the sum of all the conductor currents of the 
phase. 

C.  Pipelines 

The per-unit-length impedance of a pipeline can be 
modeled as the sum of the ground resistance R’gnd and the tube 
internal impedance Z’int [5]. The self coefficients are given by : 
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Where Sca is the surface of the tube section where current is 
flowing. This section is computed using the tube diameter and 
the complex depth of penetration of the current in the tube. ρc 
is the resistivity of the tube material. 

The mutual resistance is simply the ground resistance as 
computed in (13). The mutual inductance between two tubes is 
similar to the self inductance (imaginary part of (14)), 
replacing the tube radius with the distance between the two 
tube axes. 

The per unit length admittance matrix for pipelines is 
assembled from the conductance G’ and capacitance C’ 
matrices. Only for underground conductors, the self 
conductance is computed from the tube insulation resistance 
per unit length 
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where d is the tube diameter and Risol the insulation 
resistance per unit surface. There is no conductance for 
overhead conductors. 

In the case of an underground pipe, the imaginary part of 
the total admittance is computed using the tube self 
capacitance, which is a cylindrical capacitor. Since there is no 
mutual capacitance, therefore no off-diagonal element, the 
capacitance matrix can be computed directly using 
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Where δi is the insulation thickness and ε0 and εr are the air 
and insulation permittivity. 

For overhead pipes. since there will be mutual capacitance 
between the conductors, it is necessary to compute the 
potential coefficients. The self and mutual coefficients are 
computed using 

 + +
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Where a is the tube radius. 
Finally the capacitance matrix is computed as the inverse of 

the potential matrix. 

D.  Fence structures 

The per unit length impedance matrix of a metallic fence is 
computed from its linear resistance and inductance matrices 
[6]. The linear resistance R’ is computed using 
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Where ρwire is the wire resistivity, Swire the wire section and 
Nwire the number of wires constituting the fence. 

The linear inductance is computed using the complex 
images theory. Considering p is the depth of penetration of 

current in the ground : 
ρ
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The inductance is given as :  
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Where heq and req are respectively the average conductor 
height above ground and the mean radius of the beam 
comprising all conductors. 

The fence conductance is computed from the post 
resistance Rpiq and the ground resistance Rgnd due to their 
burying. 
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where dpiq is the distance between posts, and 
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ρpiq is the posts resistivity, Spiq their section, hpiq their height 
above ground. Dpiq represents the depth at which the posts are 
buried. 

The fence linear capacitance is given by :  
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V.  SYSTEM MATRICES 

Using modeling techniques consequent with its nature, we 
compute each structure’s per-unit-length phase impedance and 
admittance matrices independently of other structures. We then 
assemble coupled system matrices and compute the structures’ 
mutual influence coefficients to obtain M-phase admittance 
and impedance matrices, where M represents the sum of the 
conductor count from all structures. 

An n-structure system per-unit-length admittance matrix has 
the form 
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With Y’ i representing the ith structure self admittance 
matrix, and Y’ij representing the mutual impedance 
coefficients matrix between the ith and jth structure conductors. 

There is no mutual admittance between underground 
structures, or between an underground and overhead structure. 
In the case of overhead structures, there will be mutual 
capacitance between the conductors 

= ωmut mutY ' j C'  (27) 
An n-structure system per-unit-length impedance matrix has 

the form 
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With Z’ i representing the ith structure self impedance 
matrix, and Z’ij representing the mutual impedance coefficients 
matrix between the ith and jth structure conductors. 

In the case of underground structures, there is mutual 
inductance between the conductors. The mutual inductance 
coefficients between the conductors are computed using the 
same equations and methods as in the case of parallel 
underground cables, as shown in (11). 

If shielded structures are involved, the value of the mutual 
inductance applies to the structure outer conductor. 

For overhead structures, there is mutual inductance between 
the conductors. The mutual inductance coefficients between 
the conductors are computed using the same equations and 
methods as in the case of parallel overhead lines, where the 
value of the mutual impedance between two conductors is 
computed as shown in (5) 

In the case where overhead shielded structures are involved 
(such as telecommunication cables), the value of the mutual 
inductance applies to the structure outer conductor. 

In the case of mixed overhead / underground structures, 
there is mutual inductance between the conductors. Assuming 
the jth conductor is in the air and the ith one in the earth, 
consider the action of the jth circuit on the ith one to compute 
the mutual impedance. The mutual impedance coefficients are 
computed using the Lucca [7] approximation of the exact 
integral :  
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with the earth conductivity σ =
ρe
1  and the horizontal 

distance between the conductors denoted as a. 
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VI.  TRANSFORMATION MATRIX  

To facilitate the solution of the M-phase system coupled 
equations, they can be transformed into M decoupled 
equations, which can then be solved as single-phase equations.  

Modal decomposition is the adopted theory to decouple a 
system. Starting from the voltage current relation : 
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By differentiating the first equation with respect to x and 
replacing the current derivative with the second equation, a 
second-order equation for voltage only is obtained : 
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Similarly a second-order equation can be developed for the 
current : 
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We can find voltage and current transformation matrices 
such that  
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The frequency-dependent modal voltage (Tv) and current 
(TI) transformation matrices are respectively the column 
eigenvectors of the matrix products ' '

phase phaseZ Y⋅  and 

' '
phase phaseY Z⋅ .  

The current transformation matrix is related to the voltage 
transformation matrix through : 

−
 =  

1t
i vT T  (34) 

It is therefore sufficient to calculate only one of the 
transformation matrices. However, this bi-orthonormality 
cannot be satisfied [8] unless the voltage and current modal 
transformation matrices themselves form an orthonormal basis. 
This is true for the vast majority of cases encountered in the 
power system studies where the per unit phase admittance and 
impedance matrices are either Hermitian or normal [9][10]. 
This type of matrix ensures that the eigenvalues are distinct 
and their associated eigenvectors are unique and linearly 
independent.  

Problems arise when the matrix product ' '
phase phaseZ Y⋅  has 

repeated eigenvalues [11]. There are cases when some 
eigenvalues are repeated yet a linearly independent set of n 
eigenvectors can be found. There are however other cases with 
repeated eigenvalues where the eigenvectors (columns of Tv 
and Ti) corresponding to those repeated eigenvalues are not 
unique. The eigenvectors associated with a repeated set of 
eigenvalues can be transformed with a nonsingular 
transformation to another set which retains the ability to 
decouple the second-order equations. Structures that exhibit 
certain types of symmetry (such as pipe type cables) can result 
in repeated eigenvalues and hence give rise to this nonunique 
assignment of the columns of Tv or Ti associated with those 
repeated eigenvalues.  The nonunique assignment of these 
eigenvectors will not affect the diagonalization of the second-
order equations but will affect the diagonalization of the first 
order equations for Z’phase and Y’phase. For this type of structure 
the eigenvector matrices Tv and Ti need to be evaluated 
separately.  

The eigenvalues and eigenvectors are evaluated using the 
Matlab command eig.  This function uses the well known 
Lapack [12] routines to evaluate the eigenvalues and 
eigenvectors.  The eig function is very robust and provides the 
correct solution [13] when a matrix has no repeated 
eigenvalues. The eigenvectors themselves are always 
independent and the eigenvector matrix V diagonalizes the 
original matrix A if applied as a similarity transformation. 
However, if a matrix has repeated eigenvalues, it is necessary 
to find a full (independent) set of eigenvectors. If the 
eigenvectors are not independent then the original matrix is 



said to be defective. Even if a matrix is defective, the solution 
from eig satisfies A*X = X*D.  Imposing this condition in the 
eig function results in incorrect selection of the eigenvectors 
associated with the repeated roots.  Thus a more rigorous 
approach has to be investigated for the evaluation of Tv and Ti. 

The number of repeated eigenvalues (geometrical 
multiplicity) is determined and the largest possible set of 
linearly independent eigenvectors is evaluated using the rref 
Matlab function. This function produces the reduced row 
echelon form of ZY (for Tv) and YZ (for Ti) using Gauss 
Jordan elimination with partial pivoting [13]. A tolerance 
variable is included in the reduced row echelon form 
computation that allows the exact number of eigenvectors to 
be found for each eigenvalue depending on how many times it 
is repeated, smoothing out oscillations when too many or two 
few vectors are found for a particular eigenvalue.  

This algorithm works in all practical cases.  The only draw 
back is the eigenvector matrices Tv and Ti must be evaluated 
separately and the bi-orthonormality property cannot be used 
to avoid the matrix inversion of Ti and Tv. 

The modal impedances and admittances are specified in 
conjunction with the eigenvectors used in their calculation. To 
obtain them, transform equation (30) to modal quantities : 

−− = ⋅ ⋅ ⋅1mode
v phase i mode

dV
T Z' T I

dx
 (35) 

The triple matrix product in (35) is diagonal [14] 
representing the elements of the modal series impedance. This 
modal impedance becomes : 

−= ⋅ ⋅1
mode v phase iZ' T Z' T  (36) 

Similarly, the modal shunt admittance matrix is given by : 
−= ⋅ ⋅1

mode i phase vY ' T Y ' T  (37) 

VII.  PI-EXACT MODEL 

To use the model in an EMTP-type software for time-model 
simulations, it is implemented in terms of Y-matrix 
representations of the series and shunt branches of a 
multiphase pi-circuit.  

+ +

 
Fig. 3. Coupled Circuit representation of a pi-exact model 

 
For each mode j of a multiphase line, the equivalent-pi 

representation as shown in fig is : 
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where γ is the propagation constant. 
γ = modeZY  (40) 

To obtain an equivalent M-phase pi-circuit, the phase 
quantities are first transformed to modal quantities as shown 
previously. For each mode an equivalent single-phase pi-
circuit is then found in the same way as for single-phase lines. 
These single-phase modal pi-circuits each have a series 
admittance series modeY − and two equal shunt admittance 

shunt mode
1

Y
2 − .  By assembling these admittances as diagonal 

matrices, the admittance matrices of the M-phase PI-circuit in 
phase quantities are obtained from 
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This representation can be loaded directly into 
EMTPWorks devices, allowing us to perform time-domain 
simulations to study the resulting waveforms on all modeled 
structure conductors.  

VIII.  V ALIDATION  

Since this new tool can be used to perform inductive and 
capacitive coupling computations for different types of 
structures, we used a variety of established softwares (such as 
EMTP software, electromagnetic compatibility tools and 
induced noise on telecommunication lines calculators) to 
compare and validate the results. The validation process 
showed very good concordance with the references for all 
tested configurations. We also tested several cases where the 
matrix product ' '

phase phaseZ Y⋅  has repeated eigenvalues in order 

to validate the robustness of the algorithm, which in all cases  
was able to find a linearly independent set of eigenvectors. 

The next step in the validation process is a comparison of 
the computed results with measurements taken in the field. 
Induced current and voltage measurements will be taken on a 
number of structures adjacent to aerial or buried power lines, 
which will then be compared to the computed values. 

IX.  CONCLUSION 

We demonstrated a tool used to accurately model structures 
of different nature and the coupling between them. This tool 
can output matrices representing the complete coupled system 
to perform steady-state studies in a commercial simulation 
software, or create a pi-exact representation for time-domain 
simulations. To obtain the necessary decoupled equations, we 
implemented an algorithm to compute the voltage and current 
transformation matrices that will work in all cases, even with 
configurations that exhibit a certain type of symmetry, 
resulting in repeated eigenvalues for the ZY matrix. By using 
the Matlab framework, we created a high-level code that is 
easily expendable and modifiable, and when compiled as a 
COM object can be called by any executable program. 
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