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Abstract—This paper describes the development of a transient 

classification system to distinguish transients originated by the 
faults from those originated by the other disturbances such as 
load and capacitor switching. The proposed classifier is based on 
a probabilistic neural network (PNN) and uses wavelet 
coefficients of the transient currents as the features. The 
transient classification system was developed on the well known 
PSCAD/EMTDC electromagnetic transient (EMT) simulation 
program. Testing of the transient classification system on a 
simulated High Voltage (HV) transmission system showed over 
95% overall classification accuracy. Integration of the 
classification system into an EMT simulation program is 
expected to facilitate simulation studies on novel transient based 
protection methodologies. 

Keywords: transient classification, transmission system, neural 
networks, wavelet transform.  

I.  INTRODUCTION 

multitude of causes such as lack of new capacity due to 
under investment, allowing of open access, and difficulty 

in obtaining permission to build new transmission facilities 
have forced the power transmission systems to operate under 
increased stress levels. It is important to provide fast 
protection against faults to prevent system instabilities in 
power systems which are operating at low margins of stability. 
Transient based protection techniques can potentially provide 
faster response compared to traditional phasor based 
protection techniques. In addition, transient based protection 
has some additional attractive features: they are immune to 
power swings and CT saturation, and less affected by fault 
impedance [1], [2]. Availability of fast, powerful DSPs 
enables economical implementation of relays that work on 
transient based techniques.  

However, transient based protection relays are prone to 
malfunction during non-fault events that generate transients 
[1]. For example, switching of large loads or capacitor banks 
can generate transients similar to high impedance faults. Thus, 
in order to make transient based protection viable, a method is 
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required to differentiate fault transients from non-fault 
transients. The main objective of this research is to develop a 
transient classification system that can be used as the front end 
of a transient based protection relay. However, such a 
classification system can have other applications, for example 
in the field of power quality enhancement.  

This research investigates the problem of classifying the 
transients in measured currents into one of the two groups: (a) 
fault transients – the transients emanating from a fault, and (b) 
non-fault transients – the transients originated from normal 
switching event. In literature, several transient classification 
systems can be found. They are primarily proposed for 
classifying power quality disturbances. These classifiers use 
diverse array of intelligent techniques. The main techniques 
applied in the reported research are Neural Networks (NNs) 
[3], Dynamic Time Warping (DTW) [4], rule-based systems 
[5], Decision Trees (DTs) [6, 7] and Hidden Markov Models 
(HMM) [8, 9].   

NNs can approximate any well-behaved function with an 
arbitrary accuracy and can deal with hard classification 
problems with significantly overlapping patterns, high 
background noise and dynamically changing environments. 
Therefore NNs are particularly suitable for identification of 
dynamic events [3]. Probabilistic neural network (PNN) is a 
neural network that is popularly used in classification 
applications. The PNN has several advantages such as fast 
training process, inherently parallel structure, and guaranteed 
optimal classification performance if a sufficiently large 
training set is provided [10]. 

The paper presents the development of a transient classifier 
to solve the above mentioned classification problem using a 
PNN based technique and its implementation on 
PSCAD/EMTDC electromagnetic transient (EMT) simulation 
software. The feature vectors, which are the inputs to the 
classifiers, were generated by wavelet decomposition of the 
current signals containing the transients. The performance of 
the proposed scheme is evaluated using transients simulated 
on a 12-bus high voltage power system. The rest of this paper 
is organized as following: Section II gives a brief introduction 
to the PNN based classification method. The pre-processing of 
the input currents and the implementation of the PNN are 
given in Sections III and IV respectively. Simulations and 
results are presented in Section V. Finally the conclusions are 
given in Section VI. 

A 



II.  STRUCTURE OF THE TRANSIENT CLASSIFIER 
Fig. 1 shows the structure of the proposed transient 

classifier for three phase systems. The system takes three 
phase currents as the inputs. These currents are pre-processed 
using wavelet decomposition to extract various features in the 
incoming current signals. The proposed classifier consists of 
three PNN classifiers – one for each phase. Each classifier is 
trained using disturbances recorded from the phase to which it 
is connected. The final classification is made by a post 
processing decision making module that considers the outputs 
of all three PNN classifiers. With this structure, it is also 
possible to determine whether the fault is three-phase, line-to-
line or line-to-ground fault. 
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Fig. 1. Structure of the transient classifier  

III.  PRE-PROCESSING WITH WAVELET DECOMPOSITION 
In classification problems, the success of classification is 

highly depended on the features used for classification. 
Relative strengths of different frequency components buried 
in a signal are good features for classification. Wavelet 
transform is well suited for decomposing a signal into 
different frequency bands and analyzing aperiodic signals 
such as transients [11]. More details of wavelet transform can 
be found in [12]. The authors have previously developed an 
online wavelet transformation tool that can be conveniently 
used in PSCAD/EMTDC simulation environment [13].  

Figs. 2, 3 and 4 show examples of the wavelet 
decompositions of the current transients observed during a 
fault disturbance, a line switching disturbance and a capacitor 
bank switching disturbance respectively. The graphs show the 
currents in phase-A and their Wavelet decompositions 
determined up to six levels using Daubechies 4 (db4) mother 
wavelet. CA6 is the level six approximation wavelet 
coefficient which represents the low frequency portion of the 
signal. CD1-CD6 are the detailed wavelet coefficients that 
represent signal components at different high frequency 
bands, with the frequency range decreasing from CD1 to CD6. 
Some of the differences in these wavelet coefficients for fault 
transients and non-fault transients are clearly noticeable. In 
this paper, the signal energies contained in different frequency 
bands are used as features for classification. These energies, 
which are generally referred to as wavelet energies can be 
calculated using wavelet coefficients of the measured current 
signals.  
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Fig.2. Fault disturbance and its Wavelet decompositions obtained using ‘db4’ 
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Fig. 3. Line switching disturbance and its Wavelet decompositions obtained 
using ‘db4’ 
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Fig.4. Capacitive load switching disturbance and its Wavelet decompositions 
obtained using ‘db4’ 

The energy values of approximation wavelet coefficients 
(EA6) and the energy values of detailed wavelet coefficients 
(ED1, ED2, ….ED6) are calculated using (1) and (2). 
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 Here, N denotes the length of each wavelet coefficient in 
number of samples. These coefficients are the inputs to the 
PNN classifier described in the next section. 

IV.  CLASSIFIER 

A.      Probabilistic Neural Network  
The PNN was introduced by Specht in 1990 [14]. It is 

fundamentally based on the well-known Bayesian classifier 
technique commonly used in many classical pattern-
recognition systems. The nonparametric estimation technique 
known as Parzen windows is used to construct the class-
dependent probability density functions for each classification 
category [15]. This is used to determine the probability of 
given vector pattern belonging to a given category. The PNN 
selects the most likely category for the given pattern vector by 
combining this with the relative frequency of each category. 
The Parzen estimate of the probability for input x belonging to 
category A is given by the probability density function 

∑
= ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡ −−
=

n

j

j
T

j
mmA

xxxx
n

xF
1

22 2
)()(

exp
)2(

1)(
σσπ

  (3) 

where x is the m dimensional input pattern vector,  j is the 
pattern number, xj is the jth training pattern for category A, n is 
the number of training patterns, m is the input space 
dimension, and σ is an adjustable “smoothing parameter.” The 
parameter σ must be determined experimentally [16]. An input 
is assigned to the category for which it has the highest 
probability value. With PNN, no time consuming training is 
involved and online adaptation to new patterns can be easily 
implemented by way of modifying its training database with 
new patterns and their correct categories.  

Fig. 5 shows the probabilistic neural network structure 
used to implement the decision rule for classifying the input 
disturbances into two classes. This network consists of four 
layers: input layer, pattern layer, summation layer and output 
layer.  The input layer represents the input variables (x1, x2, 
x3). The pattern layer is fully connected to the input layer, with 
one neuron for each pattern in the training set. The summation 
layer sums the outputs from the pattern-layer neurons. Each 
neuron in the summation layer corresponds to a particular 
category classification problem. A summation layer neuron 
sums up the outputs of pattern layer neurons which belong to 
the category it represents. The output-layer neuron produces a 
binary output value corresponding to the highest probability 
value [10]. 
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Fig. 5: Probabilistic Neural Network Structure [10] 



B.  Implementation of PNN  
Simulation of the complete transient classification system 

in a power system transient simulation environment is 
convenient for repeated testing of the system under various 
conditions. Time domain simulation is also helpful to 
understand various issues such as time delays involved in pre-
processing of signals. Therefore, a module for simulating a 
PNN was implemented in PSCAD/EMTDC simulation 
software. The main processing steps involve in 
implementation of the online PNN classifier in EMT 
simulation environment is shown in Fig. 6.  
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Fig 6: Processing steps involve in PNN  

V.  SIMULATION 

In order to investigate the applicability of the proposed 
PNN based transient classification system simulations were 
carried out. Fig. 7 shows the high voltage power transmission 
system [17] used for the simulations.  The transmission lines 
were modeled using frequency dependent phase domain 
transmission line models that take into account details such as 
skin effect. The bus-9 was used as the infinity bus and the 
generators G2, G3 and G4 were modeled as salient pole 
synchronous generators. The complete generator models 
included exciters, turbines and governors. The three-phase 
transformers were modeled including the effects of saturation. 
Simulations were carried out at a simulation time step of 5 µs 
in order to capture high frequency components of the signals. 
The transient classifier uses three phase current signals 
obtained through current transformers as inputs. The current 
transformers were also modeled in the simulation. Current 
signals obtained during different types of fault scenarios, 
capacitor switching, and load switching occurrences were 
sampled at 20 kHz sampling frequency and recorded. They 
were used to generate required feature vectors to train the 
classifier. The detail and approximation wavelet energies 
calculated up to three levels were used for the analysis.  The 

implementation of the entire transient classifier system in 
PSCAD/EMTDC is shown in Fig. 8. The pre-processor shown 
in Fig. 8 were used to calculate the wavelet energies and 
combine the approximation coefficient and the three detailed 
wavelet coefficients into one vector to form the input for the 
PNN classifier. 

A.  Training Database 

Hundred and forty fault events and 250 non-fault switching 
events were used as the training data set. The fault data set 
included different types of faults (ABC-G, ABC, AB, AG, 
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Fig. 7. 230/345 kV, 12-bus transmission system topology 
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Fig. 8. Transient classifier system in PSCAD/EMTDC 



BG, etc.), and were created with different fault impendence 
values and different fault inception angles. The non-fault 
events include transients occurred during load, line and 
capacitor bank switching, as well as steady state non-transient 
signals. Investigations were carried out using db4 mother 
wavelet which is considered well suited for power disturbance 
analysis [5]. 

B.  Classification Results 

In order to test the classifier simulations were carried out 
extensively with different types of disturbances simulated in 
the test transmission system. The classification results are 
summarized in Table-1.  

According to the simulation results most of the fault and 
non-fault transients were correctly classified. Table-1 analyses 
the classification accuracy based on the type of disturbance. 
All misclassified faults were the high impedance faults which 
have fault impedances above 250 Ω. The lowest accuracy was 
observed in classification of the line-to-ground faults. A few 
of the line and capacitor switching events were also 
misclassified. However, the overall classification accuracy 
remained at 96%.  

TABLE-1: ANALYSIS OF CLASSIFICATION RESULTS 

Predicted Class 
Type of the transient Number 

of events Fault Non-
fault 

% 
correct 

 

A-G 25 23 2 92 

AB 25 24 1 96 

AB-G 25 24 1 96 

ABC 25 24 1 96 

ABC-G 25 25 0 100 

Faults 

All Types 125 120 5 96 

Load 
switching 25 0 25 100 

Line 
switching 25 1 24 96 

Capacitor 
switching 25 2 23 92 

Non-
faults 

All Types 75 3 72 96 

All Transients 200  96 

 

The proposed classifier uses current signals sampled at the 
frequencies ranging from zero to 20 kHz. The performance of 
the classifier was tested with noisy input signals. In order to 
investigate the effects of the noise, a number of cases were 
simulated with some noise injected into the system. No 
degradation of classification performance was observed. This 

is expected as classification is based on the abstract changes 
determined in the wavelet coefficients at different frequency 
bands during the disturbances. Thus the classifier will not be 
affected much unless the noise is very similar to the transients 
generated by faults. 

Fig. 9 shows the time variations of various signals involved 
(current in phase A and its wavelet energies) in the 
classification of a fault simulated on the system on line 1-2 at 
11.01 s. As shown in Fig. 9 the classifier was able detect the 
fault at 11.01475 s with a net response time of 0.00475 s.  

In this paper, the required feature vectors (wavelet 
energies) were calculated using the reconstruction wavelet 
coefficients of the current signals. The same set of features 
can also be calculated using the intermediate wavelet 
coefficients [13]. By using this approach, the classification 
system response time can be made approximately half of the 
current system. Further this can reduce the amount of 
computations required in determination of wavelet energies. 
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Fig. 9 An example of classification of a fault transient 

C.  Applications and Improvements 
The developed transient classification will be used in a 

transients based protection scheme, to prevent the possible 
false trip signals generated due to non-fault transients. The 
structure of such a scheme is shown in Fig. 10. Further 
investigations are in progress to improve the accuracy and test 



the system using actual recoded waveforms. The main 
difficulty faced by the authors in this respect is the lack of 
sufficiently large number of recorded transients. It is possible 
to modify the algorithm to incorporate on-line learning of 
PNN, i.e. to improve the classification accuracy by using the 
new transients that the system observes during its operation. 
Furthermore, a hardware prototype of the classification system 
is being implemented in an FPGA. 

 

 

 

 

 

 

 

Fig. 10 Application of the transient classifier in protection  

VI.  CONCLUSIONS 

The development of a PNN based transient classifier in an 
EMT environment is presented in this paper. The required 
feature vectors were generated using wavelet coefficients of 
the current signals observed during transients. Investigations 
carried out using a high voltage transmission system simulated 
in PSCAD/EMTDC showed very promising results. 
Implementation of the classification system in an EMT 
simulation program will be useful for the studies involving 
transient based protection relays where the proposed system 
would be used to discard non-fault transients.  
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