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Abstract--This paper introduces a new mesh-domain model to 

simulate time-domain transients in underground cables 
accurately considering frequency dependent effects. The model is 
formulated in mesh domain using mesh voltages and currents. 
The advantages of the mesh domain is that mesh currents and 
voltages in co-axial cables are naturally decoupled at high 
frequencies, so that the mesh domain functions (characteristic 
admittance, propagation functions etc.) behave smoothly 
compared with phase domain functions. The transformation 
matrices between mesh and phase domain are real and constant. 
The paper validates the proposed model by comparing the time 
domain simulations with solution obtained using inverse Laplace 
transform method for simple linear terminations. 
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I.  INTRODUCTION 
IME domain transmission line and cable models for 
electromagnetic transient simulation are required to be 

accurate over a very wide frequency range from few Hertz to 
several tens of kilohertz [1]. The approach for time domain 
modelling begins with the frequency domain representation.  
Then the frequency domain parameters (entries of the 
characteristic admittance and propagation matrices) are 
approximated using rational functions (curve-fitting). The 
conventional   phase domain formulation, which uses 
conductor voltages and currents, can be numerically 
challenging due to the superposition of independent traveling 
waves arising from the coupling of modes.  This results in 
oscillatory behaviour in the frequency response of elements of 
propagation matrix, which makes delay extraction and low 
order rational function approximation difficult [1], [8].  

This problem can be significantly reduced by reformulating 
the phase domain transmission line expressions into mesh 
domain expressions involving mesh voltages and currents. 
The mesh domain analysis for cables is not a new idea. For 
example, the EMTDC theory book formulates mesh domain 
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equations as an intermediate step to obtain parameters, but 
immediately converts them to phase domain [5]. The resulting 
system is then simulated using a modal domain or phase 
domain approach.  

However this paper shows that there are advantages in 
trying to solve the problem directly in the mesh domain. The 
mesh equations are naturally decoupled at high frequencies in 
a manner similar to modes. Also the characteristics of 
propagation and characteristic admittance functions are well 
behaved and easy to fit using rational functions. The resulting 
transformation matrix between phase and mesh domains is 
frequency independent. 

Once mesh domain formulation is made, known methods 
can be applied. This model exploits a feature in the Vector 
Fitting algorithm [3], in which two or more functions can be 
curve-fitted using common set of poles. The entries of each 
column of the propagation matrix are approximated using 
rational functions with a common set of poles; hence the 
numerical efficiency of the model is improved.  The modal 
order reduction technique [4] further improves the solution by 
removing poles and residues contributing insignificantly to the 
accuracy of the approximated rational function.  

Unlike the phase domain, the oscillatory behavior of mesh 
propagation function is less. However sometimes there is still 
a problem and this problem can be overcome by employing 
multiple delays (modal delays) in the functional form of the 
fitted propagation function [2], [7]. The multiple delay 
approach notably improves the accuracy of the fitted 
propagation function, compared with the single common delay 
assumption (particularly in case of highly frequency 
dependent cable systems).            

Finally time domain simulations involving example multi-
conductor underground cables are presented in order to verify 
the validity of the proposed model. The time domain results of 
the proposed model are compared with the solution obtained 
via Numerical Inverse Laplace transform technique. 

II.  PHASE DOMAIN MODELLING 
This section briefly describes the basics of traditional phase 

domain modelling and the same equations are applicable to 
mesh domain modelling.  

In the discussion to follow, the term ‘line’ refers to both the 
overhead line and the underground cable systems, as the 
treatment developed is common to both. For an n-phase 
transmission line having length l, the frequency domain 
solution of the traveling wave equation can be expressed by 
the well know matrix-vector equations at each end-of the line 

T 



given by [1],  
 

- ( ) (1)k c k c m mI Y V A Y V I= +  
 

- ( ) (2)m c m c k kI Y V A Y V I= +  
 
In the above equations, V and I are n dimensional voltage 

and current vectors and subscripts ‘k’ and ‘m’ denote sending-
end and receiving-end of the line.  Y and Z are (n×n) shunt 
admittance and series impedance matrices per unit length 
respectively.  

The (n×n) characteristic admittance matrix Yc  and  the  
(n×n) propagation matrix A are calculated as below using 
matrix functions [1]:  

 

( )-1  (3)Yc YZ Y=  

 
-   (4)YZlA e=  

  
In order to implement the model in the time domain, the 

elements of Yc and A are approximated with rational 
functions of suitable orders M and N [1] in the form shown 
below in (5) and (6). Such forms can easily be converted into 
differential equations which can be numerically integrated. 
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The unknown coefficients, cp and ap (p = 1: N) in equations 

(5) and aq, cq (q = 1: M) and d in (6) are calculated using an 
efficient robust technique called Vector Fitting [3]. Note that 
the time delay (τ) in equation (5) is estimated before the fitting 
procedure. Sometimes for accurate curve fitting additional 
terms are added to (5) with different time delays (see equation 
(17)).  For most practical transient simulation studies, it is 
sufficient to consider frequencies from zero Hz to 1 MHz for 
the fitting procedure.  

III.  MESH DOMAIN FORMULATION 
The phase domain approach for the previous section uses 

phase voltages and currents, i.e. the voltages in equations (1) 
& (2) are defined as voltages of each conductor with respect 
to ground and similarly currents are defined as currents 
through each conductor with return path through earth as 
shown in figure 1.  

In this mesh domain approach, the currents and voltages of 
a cable are defined in the mesh domain as shown in figure 2. 
Instead of selecting inner conductor to ground, sheath to 
ground, armour to ground voltages, the new set of voltages are 
chosen as voltage between inner conductor and sheath, sheath 

and armour, and armour and ground. Similarly the currents are 
selected from conductor to conductor, instead of conductor to 
ground. Later explained in this paper, there are advantages in 
formulating transmission line equations in mesh domain using 
mesh voltages and currents than in conventional phase 
domain. 

 
 

 
 

 

IV.  SERIES IMPEDANCE AND SHUNT ADMITTANCE MATRICES 
This section briefly describes the derivation of impedance 

and admittance matrices in mesh domain. The self and mutual 
impedances and admittances between the cable conductors can 
be represented using the per unit length equivalent circuit 
shown in figure 3. Here,  Zjj is the self impedance of jth loop. 
And Zij is the mutual impedance between ith and jth loops. 

 
Z11 =  impedances of internal conductor + insulator 

between first sheath and conductor  + inner first sheath.  
Zmi  =  mutual impedance of ith sheath  
Zii  = sum of impedances of outer (i-1)th sheath + (i-1)th 

 
 

Figure 2: Mesh voltages and currents in a coaxial cable system 

 
 

Figure 1: Phase voltages and currents in a coaxial cable system 



insulator + inner ith sheath.  
Znn  = sum of impedances of outer (n-1)th sheath + the (n-

1)th insulator  + self earth return . 
Yii  = shunt admittance between two adjacent conductor 

layers. 
 

 
This difficulty can be significantly reduced by choosing 

different formulation for Z   and  Y  matrices. The new current 
meshes or meshes are selected as 1-2, 2-3, 3-4…, and (n-1)-n. 
The Z   and  Y  matrices formulated in this new mesh domain 
are, 
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The mutual impedances tend to zero as frequency 

increases. Thus the   matrix formulated in the new mesh 
domain becomes increasingly diagonal at high frequencies. 
Since  Y  is already a diagonal matrix, the currents (as well as 
voltages) defined in the new mesh domain become decoupled 
at high frequencies. In other words the system supports almost 
independent traveling waves. This is a good approximation to 
a pure modal domain system at very high frequencies. 

Both magnitude and phase of the frequency response of 
elements of propagation matrix (A) behave smoothly 
compared with that of direct phase domain formulation (phase 
to ground).  This is a significant advantage for rational 

function approximation of the propagation function. A low 
order fit can be always found and this leads to an efficient 
model. This is particularly true for the elements of 
characteristic admittance matrix as well. 

 

A.  Phase domain Z and Y matrices 
The series impedance and shunt admittance matrices are 

traditionally formulated in the phase domain choosing the 
conductor currents 1-g, 2-g, 3-g...n-g as the variables. Phase 
currents and phase voltages (conductor to ground) have 
significantly mutual coupling within the frequency range from 
0 Hz to 1 MHz. This results in oscillatory behavior in 
propagation and characteristic admittance functions, when 
plotted as a function of frequency. A higher order fit is usually 
required for the rational function approximation due to the 
oscillatory nature of elements of propagation matrix both in 
magnitude and phase. 

 
Transfer impedance and transfer admittance in mesh 

domain 
The electromagnetic field penetration through cable shields 

can be explained using the transfer impedance and admittance. 
 In traditional phase domain approach, the transfer impedance 
consists of outer sheath internal impedance, impedance due to 
time varying flux in the outer insulation, self impedance of the 
earth return path and sheath mutual impedance [9]. As the 
frequency increases, all the sub-impedance terms increase 
except sheath mutual impedance. Hence, the transfer 
impedance increases with frequency, resulting in a significant 
coupling in phase voltages and currents. The phase domain 
transfer admittance is the admittance of the insulator between 
two adjacent conductors (e.g. between the inner conductor and 
the sheath) [9]. In the mesh domain approach, the transfer 
impedance only contains sheath mutual impedance ( )miZ  (see 
equation (7)), which tends to zero at higher frequencies. The 
transfer admittance in mesh domain is zero (see equation (8)). 

 

V.  TRANSFORMATION MATRICES 
The goal of mesh domain model is to develop a time 

domain equivalent circuit compatible with emtp-type 
software. Since final quantities are the phase quantities, at the 
highest level the time domain model must be expressed in 
phase domain. It is necessary to transform voltages and 
currents in phase domain to new mesh domain and vice versa. 
The voltage transformation matrix can be derived as follows. 
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Figure 3: Equivalent circuits for unit length admittance and impedance  



Note that suffix ‘g’, ‘phase’, ’mesh’ denote ground, 
traditional phase domain and the new proposed mesh domain 
respectively. 

 
(10)phase V meshV K V=  

 
The voltage transformation matrix VK  is defined as, 
 

1 1 1 . 1
0 1 1 . 1

(11)0 0 1 . 1
. . . . 1
0 0 0 0 1
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Similarly the current transformation matrix can be derived 

by considering phase to mesh transformation for currents. The 
current transformation matrix IK  is defined as, 

 
1 0 0 . 0
1 1 0 . 0

(12)0 1 1 . 0
. . . . 0
0 0 0 1 1

IK
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Another advantage of the mesh method is that current and 

voltage transformation matrices are real and constant avoiding 
the difficulties with frequency dependent transformation 
matrices. It can be easily shown that, 
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VI.  RATIONAL FUNCTION APPROXIMATION OF YC AND A 
Once mesh domain Z and Y matrices are computed (as 

discussed in section IV), mesh A and mesh Yc are then 
calculated using equations (3) and (4).  Time domain models 
require rational function approximation (curve-fitting) of 
entries of the characteristic admittance (Yc) and propagation 
(A) matrices. 

 

A.  Rational function approximation of Yc 
Although the discussion below is strategic to mesh domain 

formulation, these methods have been applied to phase 
domain approaches by previous researchers [2], [4].  

For the curve-fitting of mesh Yc, the technique used to fit 
phase Yc in the Universal Line Model [2] is employed. The 
elements of mesh Yc matrix are approximated using rational 
functions (in the form (6)) with a common set of poles. The 
common poles are identified by curve-fitting the trace of the 
matrix [2].  

 

B.  Time delay estimation for A 
The functional form of the fitted propagation function (as 

shown in equation (7)) has a single delay for each entry. 
However the use of multiple delays (modal delays) for the 
fitted propagation function gives better accuracy [2].  The 
modal delays are the delays attributed to the modes of 
propagation matrix (A). These modes are computed in the 
standard manner using a frequency dependent transformation 
matrix as for the case of the phase domain Universal Line 
Model [2]. The modal delays are estimated using Bode’s gain-
phase formula from modes of mesh A matrix [2].  

The rational form of the propagation function with multiple 
delays (τi) is, 
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Here, τi is the delay corresponding to the ith mode. The 

unknown residues and poles '
inc s′  and '

ina s ’ are obtained 

using a least squares method.  
 

C.  Identification of poles and residues in equation (14) 
This model exploits a feature in the Vector Fitting 

algorithm, in which two or more functions can be 
simultaneously curve-fitted using a common set of poles [3]. 
Each column of the mesh propagation matrix is approximated 
with a common set of poles using the modified Vector fitting 
algorithm (i.e. the unknown residues and poles in (14) are 
calculated by curve-fitting each column of the propagation 
matrix and the entries in a column share same set of poles); 
hence the numerical efficiency of the model is improved.  The 
modal order reduction technique further improves the solution 
by removing poles and residues contributing insignificantly to 
the accuracy of the approximated rational function [4]. 

 

VII.  TIME DOMAIN EQUIVALENT CIRCUIT 
The final objective of mesh domain model is to develop a 

time domain equivalent circuit, which can be implemented in 
emtp-type software. The mesh domain transmission line 
equations are, 

 
, , , , , ,- ( ) (15)m mesh c mesh m mesh mesh c mesh k mesh k meshI Y V A Y V I= +  

 
, , , , , ,- ( ) (16)k mesh c mesh k mesh mesh c mesh m mesh m meshI Y V A Y V I= +  

 
Although core of the method is the mesh domain solution, the 
ultimate real quantities are the phase quantities, at the highest 
level the time domain model must be expressed in phase 
domain. If equation (18) is multiplied by current 



transformation matrix IK , 
 

, , , - (17)I m mesh I c mesh m mesh I kK I K Y V K F=  
 

where, 
 

m ,m ,m ,m( ) (18)k esh c esh k esh k eshF A Y V I= +  
 

Since , ,m phase I m meshI K I= Then equation (17) becomes, 
 

, , , - (19)m phase I c mesh m mesh I KI K Y V K F=  
 

The time domain form of  (19) is, 
 

( ) ( ) ( ) ( )m, ,m ,m (20)phase I c esh m esh I ki t K y t v t K f t= × −  
 
where, the term  " "× denotes convolution and, 
 

( ) ( ) ( ) ( ) ( )( ),m ,m ,m (21)mesh c esh k esh k eshf t a t y t v t i t= × × +  

 
The lower case variables are the corresponding time domain 
form of the upper case variables.  The above convolutions can 
be efficiently evaluated by recursive convolution [1] and the 
equation (20) now becomes, 
 

( ) ( ), _ , _ ( ) (22)m phase eq m m mesh hist mi t y v t i t= +  
 

The term _ ( )hist mi t  is calculated using past values of voltages 

and currents. Since _ _
T

eq m eq m Iy y K= ⋅ , the equation (22) 
becomes, 
 

( ) ( ), , _ ( ) (23)m phase eq m phase hist mi t y v t i t= +  
 

Similarly for the other end of the transmission line (see 
equation (16)), 
 

( ) ( ), , _ ( ) (24)k phase eq k phase hist ki t y v t i t= +  
 

Equations (23) and (24) are the mathematical representation of 
a time domain equivalent circuit, which can be realized in 
popular electromagnetic transient programs as two current 
sources in parallel with two conductances as shown in figure 4 
for single conductor case. 
 

 
 

VIII.  APPLICATION EXAMPLE 
In order to explain the advantages of the proposed mesh 

domain method, an example underground cable system is 
considered. Figure 5 shows a three-cable system (each has an 
inner conductor and sheath) with data shown in Table I [22]. 
The typical plots of entries of the propagation matrix 
formulated in traditional phase domain are shown in Figure 6, 
clearly indicating the oscillatory behavior of phase domain 
elements when plotted as a function of frequency. 

 

 
 
 

 
 

TABLE I 
 CABLE DATA 

  
RESISTIVITY OF THE INNER CONDUCTOR ( )mΩ  1.68E-8 

RESISTIVITY OF THE OUTER CONDUCTOR ( )mΩ  2.2E-7 
RELATIVE PERMITTIVITY OF INNER AND OUTER 
INSULATORS 4.1/3.2 

EARTH RESISTIVITY  ( )mΩ  100 
LENGTH OF THE CABLE SYSTEM (KM) 30 

 
Figure 5: Three cable system 

 
 

Figure 4: Time domain equivalent circuit 



 
 

If the propagation matrix is formulated in mesh domain, the 
frequency domain response of elements of mesh propagation 
matrix (see Figure 8) show smooth behaviour in contrast to 
response of the phase domain functions. The fitted first 
column of mesh domain propagation matrix is shown in 
Figure 8 as a function of frequency. Also shown in the graphs 
are the theoretical (actual) curves (the solid lines in the same 
figure) indicating that the fitting is accurate. In comparison 
with phase domain elements, mesh domain elements are 
smooth and hence easy to curve-fit using low order rational 
functions. Table II compares the order of rational function for 
mesh domain with phase domain formulation. For the 
propagation function, order of the transfer function is reduced 
noticeably by 30%, if mesh formulation is used and hence 
leads to a numerically efficient model. 

 
 
 

 
 

 
 

Time domain simulations are conducted to validate the 
proposed mesh domain model. A short circuit test is 
conducted for the same cable system. The inner conductor of 
cable 1 is energized with 1V step, while all other conductors 
are connected to the ground. Figure 9 shows the sending-end 
current waveform (solid conductor) through inner conductor 
of cable 1 and the theoretical solution (dotted line) obtained 
via numerical inverse Laplace transform method. The current 
waveform from mesh domain model is in a close agreement 
with theoretical solution, indicating that simulation results 
from mesh domain model are accurate. 

 
 
 
Another simulation is conducted for the same cable system. 

A 1V step is applied to the inner conductor of cable 1 and all 
other terminations are kept open. Figure 10 shows the induced 
voltage (solid line) at the sending-end of the inner conductor 
of cable 2. Also shown in the graph (dotted line) is the 
theoretical solution. This confirms that the induced voltage is 
in a close agreement with theoretical results.   
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Figure 9: Sending-end current  
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Figure 8: Actual and fitted mesh propagation functions 

TABLE II 
 ORDER COMPARISON (PER ELEMENT)  

 
ORDER OF PHASE YC 10 
ORDER OF MESH YC 10 
ORDER OF PHASE A  43 
ORDER OF MESH A  33 
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Figure 7: First column of the mesh propagation function 
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Figure 6: First column of the phase propagation function 



 

IX.  CONCLUSION 
This paper proposed a new mesh-domain method to 

simulate time-domain transients in underground cables 
accurately considering frequency dependent effects. One 
advantage of this approach is that the resulting transformation 
matrix between phase and mesh domains is frequency 
independent. The mesh currents and voltages in co-axial 
cables are naturally decoupled at high frequencies hence the 
propagation function shows relatively smooth behaviour. The 
rational function approximation is relatively easier than in 
basic phase domain methods. 
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Figure 10: Induced voltage in the second conductor  


