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Abstract— Steady-state simulation plays a vital role in power 

system analysis and design. Steady-state initialization is
important for the startup of an electromagnetic transient 
simulation. One of the commonly used steady-state analysis is 
phasor analysis. If the system is free from harmonics, phasor 
analysis is accurate. However, when a nonlinear or time-varying 
component is present in the system, phasor analysis is inadequate 
because the impact of the harmonics on the operating point is not 
taken into account. This paper presents a new power flow 
algorithm based on both time and frequency domains, which is 
also called the hybrid analysis. The proposed power flow 
algorithm employs a time-domain method to model nonlinear 
components and time-varying components and uses a frequency 
domain method to handle linear and distributed elements. 
Although in the past work, hybrid approach has been used to 
obtain steady-state voltage and current waveforms of a nonlinear 
or time-varying system, it has not yet been used for a power flow 
analysis. In this paper, we will show how to extend the existing 
hybrid method to account for the power flow constraints, imposed 
by the generator and load buses. Moreover, the proposed method 
is more efficient, as compared to the existing method because one 
redundant Newton iteration loop is eliminated in the proposed 
hybrid method.    

Index Terms—Time-domain analysis, frequency-domain 
analysis, Newton’s method, Power system harmonics

I.  INTRODUCTION

TEADY-state analysis plays a vital role in power system 
design and analysis: A steady-state operating point is 

necessary for small-signal analysis, which is commonly used 
for controller design and stability evaluation. Moreover, 
accurate steady-state initializations are important for the 
startup of an electromagnetic transient simulation.

When systems only contain linear time invariant (LTI) 
components, phasor analysis can provide accurate steady-state 
solutions. However, when a nonlinear or time-varying 
component exists in a system, phasor analysis becomes 
inadequate.  In general, there are two approaches for obtaining 
the steady-state solution of a system  time- and frequency-
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domain approaches. Time-domain steady-state analysis, also 
called the shooting method, is pioneered by Aprille and Trick 
[1]. They recognized that finding the periodic steady-state 
solution of a circuit can be formulated as a two-point 
boundary-value problem in which the solution over one period 
T, is required to satisfy the periodicity constraint:

0)0()(  xTx ,                                            (1)

where x is a vector, containing the system states. Based on (1), 
a Newton-type algorithm can be derived, and it can rapidly 
find out the steady-state solution [1]. Newton’s method 
requires the evaluation of a Jacobian matrix. The method of 
sensitivity circuit analysis [2] allows the Jacobian matrix to be 
constructed by simulating, over one period, a set of companion 
circuits, via transient analysis. Such a feature allows the 
shooting method to be easily incorporated into a transient 
simulation program [3]. However, the shooting method is not 
without its disadvantages. The shooting method cannot handle 
distributed elements [4]. Therefore, transmission lines cannot 
be represented by distributed-parameter line equivalents and 
have to be represented by their single or cascaded pi 
equivalents. If cascaded pi equivalents are used to gain 
accuracy, the computation efficiency will be rapidly decreased 
because the number of inductors and capacitors is extensive, 
requiring a large number of transient simulations for acquiring 
the Jacobian matrix [5]. Frequency domain methods [6]-[12] 
use an entirely different approach. Essentially, all the system 
state variables are represented by their Fourier coefficients so 
that the differential equations of the system can be transformed 
into complex algebraic equations. These equations are then 
solved by an algorithm of Newton-type [7]-[12]. Linear or 
distributed elements such as transmission lines can all be easily 
handled in the frequency domain. However, the main problem 
of the frequency-domain methods is that a large number of 
harmonics may need to be taken into considerations if the 
system consists of components with strong nonlinearities [13].

Both time- and frequency-domain approaches have their 
advantages and disadvantages. Therefore, the best way is to 
solve the system by a combination of the two approaches. This 
is commonly referred to as the hybrid methods. Yacamini et al. 
[14] and Arrillaga et al. [15], [16] were one of the pioneers 
who used the hybrid methods to obtain the steady-state 
solution of a power system. The system they studied was a 
Thyristor-based AC-DC converter. The algorithm is as 
follows:
The system to be solved is assumed to be at a certain operating 
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point and the corresponding time-domain ac current and dc 
voltage waveforms are derived. Then, these waveforms are 
converted into the frequency domain, and the dc currents are 
solved and converted back to the time domain. The iteration 
process continues until the desired operating point is found. 
Semlyen and Medina [17], and Ushida et al. [5] extended this 
hybrid concept and applied it to a general power system. They 
proposed to divide a power system into two parts such that the 
“frequency-friendly” components such as linear R, L, C, and 
distributed transmission lines are modeled in the frequency 
domain while “time-domain friendly” devices such as 
nonlinear R, L, C, and time-varying devices are modeled in the 
time domain. Moreover, instead of using the sequential 
iteration as in [14]-[16], Newton’s iteration is employed to 
achieve quadratic convergence [18]. Fig. 1 demonstrates the 
basic ideas of the hybrid method proposed in [17] and [5]. 
First, the system is partitioned into two parts. Both parts are 
connected to a common harmonic voltage source, V, as shown 
in Fig. 1.  Note that for illustration purpose, Fig. 1 only shows 
two-port systems. The method can be extended to the multi-
port cases. One part of the system is solved by the time-
domain shooting method, while the other in the frequency 
domain to obtain the injected current harmonics I1 and I2, 
respectively. Then, the Newton iteration can be formulated by 
forcing the sum of the two injected currents to be zero (i.e. 
Kirchhoff’s current law):

)()()1( kkk   , for k = 1, 2, 3,                    (2)                                          

where V .

The correction term, )(k is given by the solution of

)()()( kkk MJ  ,    (3)
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Fig. 1.  Algorithm of the existing hybrid method

Such an algorithm is conceptually elegant but may not be 
very efficient. This is because I1 in (2) is obtained after the 
shooting method is applied to the time-domain subsystem. 
Therefore, a double iteration loop is resulted. If 10 iterations 
are required by the shooting method, and 10 iterations required 
by (2) to reach the final convergence, then a total of 100 
iterations are required. Such a number may well reach that 
required by a brute force time-domain transient analysis for 
obtaining the steady-state solutions. Moreover, the hybrid 
algorithm presented in [5] and [17] only deals with how to 
obtain the steady-state waveforms of the power system. In a 
power system, not only steady-state waveforms but also the 
values of the active and reactive power components delivered 

or absorbed by the generator and load buses are interested by 
the power engineers. Note that [16] has added the power flow 
constraints to the formulation proposed in [14] and [15]. 
However, how power flow constraints can be added to the 
formulation proposed in [5] and [17] have not yet been 
discussed. Hence, the main objective of this paper is to modify 
the hybrid method proposed in [5] and [17] (i.e. equation (2) 
and (3)) such that it becomes more efficient and is able to 
account for power flow constraints imposed by the generator 
and load buses.  

The organization of this paper is as follows: Section II 
describes the proposed hybrid algorithm. Section III shows 
two numerical examples. Finally, a conclusion is given in 
Section IV.

II.  PROPOSED HYBRID ALGORITHM

A.  Formulation of the Proposed Method

The reason that the hybrid method proposed in [5] and [17] 
requires two iteration loops is that the shooting method is used 
before (2) and (3) are evaluated. However, such a loop is 
redundant and can be eliminated. To eliminate this loop, we 
simply extract the periodicity constraints of subsystem 1 in 
Fig. 1 and put it in the mismatch vector, M of (3). In this way, 
we are forcing the Kirchhoff’s current law and the periodicity 
constraints to be simultaneously satisfied. Hence, only one 
loop is resulted. Moreover, to satisfy the power flow 
constraints imposed by the generator and load buses, the active 
power and reactive power constraints from both two 
subsystems are also added to M of (3). Fig. 2 illustrates the 
concept of the proposed method. 
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Fig. 2.  Algorithm of the proposed hybrid method

Following the concept of Fig. 2, equation (4) is resulted.
)()()1( kkk   , for k = 1, 2, 3,                    (4) 

where  TabsexVV  )0(}Im{}Re{ . 

The correction term,  )(k is given by the solution of

         )()()( kkk MJ  ,       (5)
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where

 Tschsch QQPPxTxIIIIM  )0()(}Im{}Re{ 2121

, 



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M
J , eabs is a vector, containing the voltage magnitudes 

of the PQ buses,   the phase angles of the PV and PQ buses, 
Psch the scheduled active power components of the PV and PQ 
buses, and Qsch the scheduled reactive power components of 
the PQ buses. Note that the mismatch equations presented in 
Fig. 2 are a mixture of real and complex numbers. Thus, all the 
complex quantities (the voltage and current harmonics) need to 
be decomposed into real and imaginary components as shown 
in (4) and (5).

B.  Calculation of the Jacobian Matrix

The Jacobian matrix of (5) is expressed in (6). Some of the 
elements in (6) can be obtained analytically while some of 
them are easier to be evaluated numerically. For instance, 
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can be directly

obtained by inspecting the admittance matrix of the frequency 
domain subsystem [19]. On the other hand, all the other terms 

are easier to be evaluated numerically:  
)0(

)(

x

Tx


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can be obtained 

by simulating, over one period, a set of companion circuits, via 
transient analysis [2]. The rest of the terms can be obtained by 
sequentially perturbing each element of the unknown 
variables, and calculating the change in the corresponding 
variables or mismatch equations.  

The numerical calculation of the Jacobian has the 
advantage of ease of coding, but it is slow. Since the majority 
of the Jacobian entries are calculated numerically, it is not 
computationally efficient to re-evaluate the Jacobian matrix for 
each iteration. Thus, we propose to use Broyden’s method [20] 
to update the Jacobian matrix. In essence, the full Jacobian 
matrix is only calculated once to start the iteration process. 
Refinement of the Jacobian matrix is achieved by introducing 
correction terms in the iteration loop. The disadvantage of 
Broyden's method is that the quadratic convergence of 

Newton's method is lost, being replaced by the superlinear 
convergence [20]. However, the reduction to superlinear 
convergence is justified due to the greater reduction in the 
amount of the computation time at each iteration step.

C.  Power Electronic Modeling

The concept that linear and distributed elements are 
modeled in the frequency domain while nonlinear and time-
varying devices modeled in the time domain, is generally true. 
However, one needs to pay particular attention to one type of 
time-varying devices — power electronic devices. In order for 
a power electronic device to work properly, there is an 
important requirement (Kirchhoff’s laws) needs to be 
followed: The dc side of a voltage source converter (VSC) 
needs to appear as a voltage source and the ac side needs to 
appear as current source, and vice versa for a current source 
converter (CSC) [21].  Thus, the capacitor at the dc side and 
the inductors at the ac side of a VSC whereas the inductor at 
dc side and the capacitors at the ac side of a CSC cannot be 
absorbed into the frequency domain. They should be regarded 
as an integral part of these devices, and modeled in the time 
domain. 

III.  NUMERICAL EXAMPLES

To validate the proposed algorithm, two numerical 
examples are presented in this section. To simplify the 
problem, all the generator and load buses considered are 
represented by ideal voltage sources. 

A.  Example 1

Fig. 3 shows a three-bus system. Bus 1 is designated to be 
the slack bus, Bus 2 is connected to a VSC, whose switching 
frequency is 1620Hz, and Bus 3 is connected to a PQ load. 
Transmission lines, TL12, TL13, and TL23 are assumed to be the 
same length. All the parameter values are listed in the 
Appendix section.
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Fig. 3.  Example 1: 3-bus test system with a time-varying device.

To solve this system with the proposed method, the circuit is 
first divided into frequency- and time-domain parts. Since the 
VSC is a time-varying device, it is modeled in the time domain. 
The generator and load buses, on the other hand, can all be 
easily modeled in the frequency domain. Thus, the system is 
divided as shown in Fig. 4, and a harmonic voltage source is 
connected to both subsystems (see Fig. 5), which is then 
solved by the proposed method. 
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Fig. 4.  3-bus test system is divided into two subsystems. 
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Fig. 5.  VSC is modeled in the time domain, whereas the rest of the system is 
modeled in the frequency domain.
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Fig. 6. Residual transition of the proposed method and the brute force 
analysis.
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Fig. 7. Waveform of phase A of current ic obtained by the proposed method 
and the brute force analysis.
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Fig. 8. Waveform of phase B of current ic obtained by the proposed method 
and the brute force analysis.
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Fig. 9. Waveform of phase C of current ic obtained by the proposed method 
and the brute force analysis.

Fig. 6 shows the transition of residuals of the proposed 
method when the first 50 odd harmonics are included in the 
calculation. The residual is defined as follows:

)0()( xTxErs  ,    (7)

     }Max{ )1()(
rs

 n
rs

n
rs EER ,    (8)

where the superscript n and n-1 represent the nth and n-1th 
iteration step. 

As can be seen, the proposed method only takes a few 
iterations steps to achieve very small residuals (< 1 10-5). On 
the other hand, the residuals of the brute force analysis are still 
quite large ( 1) even after many iteration steps. 

Figs. 7-9 show the waveforms of the current ic (refer to Fig. 
4) obtained by the proposed method and the brute force 
analysis. Fig. 10 shows the corresponding current spectra. 
These figures indicate they are generally in good agreement. 
However, small discrepancies do exist between these two 
approaches. These come from the fact that the residual of the 
brute force analysis is not as small as the proposed method.
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Fig. 10. Spectra of current ic obtained by the proposed method and brute force 
analysis.

Fig. 11.  Active and reactive power components of Example 1

Finally, Fig. 11 shows the active and reactive power 
components predicted by the proposed method and brute force 
analysis. Their values are consistent with each other. This is 
because their values are in the range of hundred kW and are 
not strongly affected by those small discrepancies shown in 
Figs. 7-9.

B.  Example 2

The second example is similar to Example 1, except that a 
VSC is replaced with a three-phase non-linear inductor (Fig. 
12) and that distributed transmission lines with different 
parameters are used (refer to the Appendix section). The 
nonlinear inductor is a three-phase nonlinear inductor (Fig. 13) 
whose flux-current characteristic is shown in Fig. 14. The 
characteristic is approximated by the piecewise linear 
functions as in reference [22]. Unlike the VSC case of 
Example 1, TX1 here can be lumped into the frequency-
domain part because it is linear and is not part of the nonlinear 
load. Figs. 15, 16 and 17 show that the results obtained by the 
proposed method and brute force analysis are in excellent 
agreement.

Fig. 12.  Example 2: 3-bus test system with a nonlinear device.
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Fig. 13.  Nonlinear load of Example 2. 
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Fig. 14.  Flux-current characteristic of the nonlinear load.
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Fig. 15.  Waveform of phase A of current ic obtained by the proposed method 
and brute force analysis.
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Fig. 16.  Current spectrum of phase A of ic obtained by the proposed method 
and brute force analysis.
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Fig. 17.  Active and reactive power components of Example 2

IV.  CONCLUSIONS

This paper presents a hybrid harmonic power flow method. 
Linear and distributed elements are modeled in the frequency 
domain whereas nonlinear and time-varying devices are 
modeled in the time domain. Different from the existing hybrid 
method, the proposed hybrid harmonic power flow method 
only requires one iteration loop and can account for power 
constraints imposed by the generator and load buses. Such an 
algorithm may be very suitable for the startup of an 
electromagnetic transient program.

V.  APPENDIX

A.  Example 1

1. Slacka bus voltage: 6.6 kV
2. TX1 = 0.782 mH
3. The parameters of VSC:

a. Modulation index, ma = 0.9
b. Firing angle,  = 3
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4. All the transmission lines are represented by the 
lossless Bergeron’s model with half  Rloss at both 
ends. The parameters are listed as follow:

a. Bergeron’s model: 
Characteristic impedance in the modal 
domain Z01 = 143.103 ; Z02 = 141.255 ; 
Z03 = 163.761 
Traveling time: 1 = 297.7899 s; 2 = 
281.5468 s; 3 = 277.5084 s
Current transformation matrix:


















.35204-.5-.35205

.646130.35416

.35204-.5.35205

iT

b. Rloss = 2 

B.  Example 2

1. Slack bus:  6.6 kV
2. TX1 = 0.782 mH
3. All the transmission lines are represented by the 

lossless Bergeron’s model with half Rloss at both ends. 
The parameters are listed as follow:

a. Bergeron’s model: 
Characteristic impedance in modal domain 
Z01 = 497.848 ; Z02 = 284.547 ; Z03 = 
239.758 
Traveling time: 1 = 125.77 s; 2 = 102.02 
s; 3 = 100.65 s
Current transformation matrix:


















.407362-.707107.604448

.8198630.522823

.407362-0.707107-.604448

iT

b. Rloss: 5.2 
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