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Abstract–This paper presents a new model to describe
the saturation and hysteresis effects of the magnetizing
branch in a transformer. The implementation of this
model is done in the EMTP-RV environment. The A(x)
model will be first explained and the details regarding its
implementation will be discussed. Afterwards, the results
of this model are compared to other existing models. The
A(x) model can account for a wide range of hysteresis
shapes. It is also computationally efficient and only the
major loop data is needed to fully describe the trajectories.
Furthermore, the A(x) model is capable of modeling the
wider part of the major loop near saturation, where most
models tend to fail.
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I. INTRODUCTION

NUMEROUS models of hysteresis and saturation have
been developped throughout the years, all of which have

advantages and disadvantages. Some of them are fundamental
in nature and attempt to explain the nanoscopic behavior of
the magnetic media, while others are phenomenological and
simply rely on experimental data and mathematical functions.
Hysteresis and saturation are often confounded with each
another. The hysteresis phenomenon is based on the branching
due to the excitation’s history that can eventually lead to the
formation of loops, while saturation results in the inability of
the response to further raise to an increase in excitation [1].
It is a thermodynamic process in which losses are produced
and in which case the generated trajectory in the B(H) plane
will be counterclockwise [2]. While both phenomena can
be represented separately, the model proposed in this paper
attempts to model both using a unique branch that will be
referred to as the magnetizing branch.
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Phenomenological models are normally based on hyperbolic
functions to mimic nonlinear behavior [3][4][5]. These func-
tions are asymptotic in nature, just like the saturation phe-
nomenon and the hysteresis effect can be accounted for with
a simple translation. These models rely on nonlinear regression
techniques and the quality of the fit to the experimental major
loop data depends on the number of degrees of freedom of
the mathematical model. In particular, the thicker part of the
loop near saturation is often the source of fitting inaccuracies,
as it can be seen in [6] and [7]. Moreover, this gooseneck
appearance is often attributed to eddy currents, but it has
been shown otherwise in [7]. In order to account for this
phenomenon and produce more accurate regressions, a new
model is required.

First, there are a few prerequisites to choose the right
function. Because of saturation, the model needs to be asymp-
totic and also requires a certain amount of shift, in order to
account for both coercivity and remanence. Furthermore, it has
to reproduce the gooseneck appearance of the curve, which
means that the function is asymmetrical with respect to the
abscissa and the ordinate. In other words, the lower part of
the upward branch is not a 180 degrees rotation of the upper
part. Also, the model needs to account for the reversible part
of magnetization and should have enough degrees of freedom
to produce a good regression. Therefore, by combining all
these requirements, a new model was created, namely the A(x)
model, which is inspired from the works of [8] and [9]. It
is intended for the simulation of electromagnetic transients
in power systems with the goal of achieving accuracy while
staying computationally efficient and it was implemented in
EMTP-RV [10].

II. THE A(X) MODEL

In order to reproduce the experimental results in phe-
nomenological models, a function, or combination of functions
need to be found, from which it will be possible to get the
best regression. For this purpose, the hyperbolic tangent and
the hyperbolic secant functions proved from their respective
shapes, to resemble classic major loop curves exhibiting
gooseneck appearances, like the one shown in Fig. 1. Let us
define

f1(x) = k1 tanh (k2x− k3) (1)
f2(x) = k4 sech2(k2x− k3) (2)

where parameters k1 and k4 define the amplitude, parameter
k3 defines the horizontal shift and parameter k2 represents the
horizontal scale of these functions. Also, the hyperbolic secant
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Fig. 1. Typical major loop exhibiting a gooseneck appearance

is squared in order to get a thinner curve. The behavior of these
functions can be seen in Fig. 2 and 3. By shifting horizontally,
the hyperbolic tangent can get the right coercivity. Although,
with this function alone, the upper part is the same as the
lower part and no gooseneck appearance is generated. In order
to get the right curvature and differentiate the two parts, the
hyperbolic secant is added to the hyperbolic tangent. At last, in
order to account for a wide variety of curves and to give more
leverage for better nonlinear regressions, a few more of these
functions can be added to the model’s function, as needed.
After performing several fitting cases, it was found that the
optimal number of hyperbolic tangents and hyperbolic secants
was three. The A(x) function for the upward part of the major
loop is given by

A(x) = k1 tanh (k2x− k3)− k1k4sech2(k2x− k3)
+ k5 tanh (k6x− k7)− k5k8sech2(k6x− k7)
+ k9 tanh (k10x− k11)− k9k12sech2(k10x− k11)
+ k13x (3)

where the constants k1 to k13 are found with the upward
trajectory of the major loop, by using a nonlinear regression
technique on the experimental data. The coercivity and re-
manence of the loop are given by the even functions, the
hyperbolic secants, and by the shifting parameters k3, k7 and
k11. To generate the downward trajectory, it is simply needed
to change the signs of these parameters. Also, the reversible
part of magnetization can be accounted for with the addition of
the linear term k13. Without this term, the major loop saturates
at Asat = k1 + k5 + k9.

Generally, the magnetization characteristic is given in terms
of flux density as a function of magnetic field intensity B(H).
However, it is more convenient to work with flux linkage
and current from an EMTP perspective, since these can be
easily measured experimentally and compared to simulation,
regardless of the transformer’s configuration. To obtain the
flux linkage, it is simply needed to integrate the voltage.
Translating (3) in terms of flux linkage and current gives

Ψ+(i) = k1 tanh (k2i− k3)− k1k4sech2(k2i− k3)
+ k5 tanh (k6i− k7)− k5k8sech2(k6i− k7)
+ k9 tanh (k10i− k11)− k9k12sech2(k10i− k11)
+ k13i (4)

for the upward trajectory of the major loop and

Ψ−(i) = k1 tanh (k2i+ k3) + k1k4sech2(k2i+ k3)
+ k5 tanh (k6i+ k7) + k5k8sech2(k6i+ k7)
+ k9 tanh (k10i+ k11) + k9k12sech2(k10i+ k11)
+ k13i (5)

for the downward part.
To define the minor loops, one must recall that all trajecto-

ries must remain inside the major loop. In order to do so, the
major loop must be only reached at infinite excitation. This
axiom constitutes the asymptotic behavior for all trajectories.
Also, at the current reversal point irn

, the flux linkage of the
upward trajectory must be equal to the flux linkage of the
downward trajectory. To meet this condition, the major loop
trajectories must be shifted in order to intersect at (irn

, ψrn
).

The shifting parameter must equate the two flux linkages at
reversal and gradually nullify when approaching saturation.
From these considerations, we derive the general equations
for the model

ψ+(i) = Ψ+(i) + Cn+(i) (6)

ψ−(i) = Ψ−(i) + Cn−(i) (7)

where Cn+(i) and Cn−(i) are the parameters that modify the
upward and downward major loop trajectories, respectively.
These parameters are given by

Cn+(i) = Cnu+

(
a+(irn−1)− a+(i)
a+(irn−1)− a+(irn

)

)
+ Cnd+

(
a+(irn)− a+(i)

a+(irn
)− a+(irn−1)

)
(8)

Cn−(i) = Cnu−

(
a−(irn−1)− a−(i)
a−(irn−1)− a−(irn

)

)
+ Cnd−

(
a−(irn)− a−(i)

a−(irn)− a−(irn−1)

)
(9)

where the subscript n denotes the order of reversal. At the
point of reversal, we have Cn(i) = Cnu, because of the
leverage provided by the functions a(i). So, the constants
Cnu+ and Cnu− are the differences in flux linkage between
the reversal point and the major loop.

Another axiom for this model is the deletion of past input
extrema if the excitation is increased in amplitude beyond in-
termediate extrema. This property highlights the need to keep a
list of all the reversal points. If the excitation is monotonically
increased beyond the last maximum, it shall be deleted, along
with the last minimum. Same situation applies when the
excitation is monotonically decreased further than the last
minimum. Also, in this model, the minor loops must be closed,
i.e. the nth order reversal curve must reach (irn−1 , ψrn−1),
should the excitation be brought back to its former extrema.
Referring to (8) and (9), we have Cn(i) = Cnd at irn−1 and
because of the last property, the constants Cnd+ and Cnd− thus
become the difference in flux linkage between the (n − 1)th

reversal point and the major loop.
To illustrate the working principle of the minor loop trajec-

tories, a third order reversal curve is shown in Fig. 4. There
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Fig. 2. The hyperbolic tangent function in relation to its parameters
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Fig. 3. The hyperbolic secant function in relation to its parameters

are three reversal points, (ir1 , ψr1), (ir2 , ψr2) and (ir3 , ψr3),
respectively. In the downward third order reversal trajectory,
the constants C3d− and C3u− are calculated when the third
reversal is detected. Like it is illustrated, the constant C3u−
is the difference in flux linkage between Ψ− and ψr3 and the
constant C3d− is the difference in flux linkage between Ψ−
and ψr2 .

On the other hand, the leverage functions a(i) must be
chosen in order for the minor loops to mimic the hyperbolic
nature of the major loop. After experimenting with several
leverage functions, the chosen functions that reproduce this
behavior are

a+(i) = k1 tanh (k2i− k3)− k1k4sech2(k2i− k3)
+ k5 tanh (k6i− k7)− k5k8sech2(k6i− k7) (10)
+ k9 tanh (k10i− k11)− k9k12sech2(k10i− k11)

a−(i) = k1 tanh (k2i+ k3) + k1k4sech2(k2i+ k3)
+ k5 tanh (k6i+ k7) + k5k8sech2(k6i+ k7) (11)
+ k9 tanh (k10i+ k11) + k9k12sech2(k10i+ k11)

The reversible part of magnetization has been taken out of
these equations, since the leverage functions need to saturate
in order to stay within the major loop.

Finally, the model also needs to represent the first mag-
netization process when the transformer is deenergized. In
order to do so, the stack must be filled with vertices that
follow the virgin magnetization curve. Because of the deletion
property and of the closed loop axiom, the trajectory will
follow the extrema from the stack. Hence, in order to fill the

stack with vertices, a new function is needed to generate the
virgin magnetization curve

ψvirgin(i) = (k1 tanh (k2i) + k5 tanh (k6i) + k9 tanh (k10i)
+ k13i)(1− 2k14sech2(k15i)) (12)

where k14 is the initial curvature and is defined between zero
and one half. The higher this parameter is, the more curvature
there will be around origin, which in other terms results in
a lower initial slope. On the other hand, the parameter k15

will modify the slope below saturation, which is adjusted to
fit the major loop. Typically, a value of max{k2, k6, k10} will
be acceptable in most cases, but it can be manually modified
during fitting.

III. NUMERICAL IMPLEMENTATION

The A(x) model was programmed in Fortran-95 as a DLL
and it was interfaced with the core code of EMTP-RV by using
the guidelines provided in [11]. Furthermore, the numerical
implementation is based on the works of [6] and [12].

In EMTP-RV, the nonlinear devices are solved simulta-
neously with the linear network equations. The nonlinear
devices are linearized at each time-point and replaced by their
Norton equivalent for solving the complete system of network
equations. A Newton iterative procedure is applied at each time
point to find the right equivalent for each nonlinear device. As
such, the flux linkage is considered to be the excitation and
the current is the response of the magnetizing branch.

At a given time-point τ , the iterative process starts by
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Fig. 4. Minor loop trajectories showing a third order reversal curve

calculating the flux linkage from the voltage

ψkm(τ) =

τ∫
τ−∆t

vkm(τ)dt+ ψkm(τ −∆t) (13)

where k and m are the connectivity nodes of the magnetizing
branch, vkm is the voltage and ∆t is the integration time
step. Equation (13) is solved using the trapezoidal integration
method. EMTP-RV also applies the Backward Euler method
for discontinuity treatment. The generic solution is given by

ψkm(τ) =
∆t
2
vkm(τ) + ψkmhist(τ) (14)

where the term ψkmhist(τ) depends on the solution method.
For the trapezoidal method, it is given by

ψkmhist(τ) =
∆t
2
vkm(τ −∆t) + ψkm(τ −∆t) (15)

and for the Backward Euler method

ψkmhist(τ) = ψkm(τ −∆t) (16)

Afterwards, the branch’s current ikm(τ) corresponding to
the flux linkage found with (14) is calculated from (6) and
(7) by means of the Newton iterative method. This is because
the A(x) model is given in terms of ψ(i) and there is no
explicit solution to i(ψ), namely the inverse function. After the
quiescent point (ikm(τ), ψkm(τ)) has been found, the function
can be locally linearized, assuming that the integration time
step is sufficiently small

ψkm(τ) = Kqikm(τ) + ψq (17)

where Kq is the slope and ψq is the ordinate at origin of the
linearization. The slope can be found from

Kq =
ψkm(τ)− ψkm(τ −∆t)
ikm(τ)− ikm(τ −∆t)

(18)

since there exists no analytic inverse function to the function
ψ(i) and thus, its derivative cannot be analytically found.
Then, the ordinate at origin can be found by solving (17) for
ψq . By combining (14) and (17), the linearized current of the
branch becomes

ikm(τ) =
∆t

2Kq
vkm(τ) +

ψkmhist(τ)− ψq
Kq

(19)
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Fig. 5. Benchmark circuit 1

The iterative Norton equivalent is found directly from (19).
This equivalent is in turn given back to EMTP-RV to solve
the network equations and the Newton iterative process for
nonlinear devices continues until all nonlinear devices have
converged. As for the steady-state initialization, the linear
inductance corresponding to the initial slope at coercivity is
inserted into the network equations to calculate the steady-
state flux linkage and the corresponding steady-state current,
assuming that the initial trajectory starts on the major loop.

A few concluding remarks need to be made regarding
the limitations of the A(x) model. First, this model is not
frequency dependent, i.e. the rate of change of the excitation
has no effect on the trajectories, only the past extrema does. It
is said to be rate independent and assumes that the frequency
is sufficiently high to overcome the thermal relaxation effects,
while sufficiently low to neglect the eddy current variations
[2]. Secondly, the high number of degrees of freedom of the
A(x) function and the complexity of the major loop shape
complicates the computation of the nonlinear regression. For
this matter, a new curve fitter was implemented, which uses
the MATLAB curve fitting toolbox [13] routines in order to
find the values for parameters k1 to k13, obtained from the
ascending branch of the experimental major loop.

IV. SIMULATION BENCHMARK

In order to assess the validity of the proposed model, two
benchmarks were created in EMTP-RV to simulate various
minor loop trajectories. Moreover, all the parameters used for
these simulations can be found in the appendix.

The first circuit consists of a controlled voltage source in
series with a resistance and the magnetizing branch, as shown
in Fig. 5. The resistance is inserted to allow the distortion
of the voltage and thus the flux linkage of the magnetizing
branch. It will be used to verify opened minor loop trajectories.
To do so, the function from the signal generator is set to

fg(t) = 1500t sin (120πt)

The corresponding signal is shown in Fig. 6.
The second benchmark will test whether the model produces

good fitting results or not and will be used to compare with
the results of the actual EMTP-RV hysteretic reactor [7][12].
The experimental data used for the nonlinear regression is the
overexcitation at 1.4 pu of the 370 MVA transformer found in
[14]. The overexcitation has to be as large as possible in order
to get a loop close enough to the asymptotic major loop. The
corresponding circuit is shown in Fig. 7. Here, the source of
1.4 pu with a short-circuit current of 24 kA is represented
by a voltage source of 177 kV(rms) and an impedance of
(0.21+j7.38)Ω. Since the reactor’s major loop will mimic the
experimental ψ(i) curve at 1.4 pu overexcitation in unloaded
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Fig. 8. Experimental data showing losses in the saturation region

conditions, there is no need to add the series and shunt
impedances of the classical transformer model. Instead, only a
series resistance is needed in order to account for the finite area
found in the saturation region, shown in Fig. 8. The equivalent
resistance found from trial and error to reproduce these losses
was estimated to 950 mΩ.

V. SIMULATION RESULTS

The result of the first benchmark circuit is shown in Fig. 9.
The flux linkage at t = 0 is null, because the magnetizing
branch is initially demagnetized. Afterwards, the unclosed
minor loops progressively increase in size as the source
increases and the extrema of the ψ − i characteristic form
the normal magnetization curve, i.e. the trajectory that would
be followed provided that the magnetic medium is in the
demagnetized state. These results are in agreement with the
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Fig. 10. Results of the second benchmark for the A(x) model
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Fig. 11. Results of the second benchmark for the EMTP-RV hysteretic
reactor model based on [6][7]

minor loop trajectories found in the literature [2], [8] and in
turn validate the trajectories for the model.

For the second test, the results are shown in Fig. 10 to Fig.
13. Here, the experimental data is represented with dots and
the simulation results are shown with a solid line. The first pair
of graphs highlights the strength of the A(x) model. It is able to
reproduce adequately the gooseneck appearance of the curve
near saturation. Although the fitting method used in EMTP-RV
is sufficiently accurate in most cases, it is limited as compared
to the A(x) model fitting. In this particular case, it is unable
to reproduce the wider region near saturation. This means
that the losses are not modeled accurately and will affect the
precision of the transient response of the magnetizing branch.
Basically, models such as [7] and [15] will fail to model this
part correctly because of the hypothesis that the curves are
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Fig. 13. Losses in the saturation region for the second benchmark using the
EMTP-RV model

symmetrical, i.e. that the lower part of the ascending branch
is a 180 degrees rotation of its upper part. However, this
assumption is false, as it can be seen in Fig. 10, because
of the wider area below saturation. On the other hand, the
A(x) model is able to correctly reproduce these losses by
using the whole upward branch for the curve fitting instead
of just the upper part, not to mention that the A(x) function
has more degrees of freedom than the hyperbolic function used
in [7], which in turn implies that a better nonlinear regression
can be achieved. Furthermore, the results from Fig. 12 and
Fig. 13 show that both models can effectively reproduce the
losses in the saturation region by means of the 950mΩ series
resistance and with the correct saturation inductance level
(slope), represented by parameter k13.

VI. CONCLUSIONS

A new modeling approach for the saturation and hystere-
sis phenomena was proposed and its implementation in the
EMTP-RV solution method was presented. Two benchmarks
were used for validation. The obtained results demonstrate
that the model is adequate to reproduce the experimental data
precisely. As a consequence, it was highlighted that in order
to model the wider area near saturation, the branches cannot
be symmetrical. Furthermore, the choice of the function to
model this phenomenon is critical, in order to achieve a better
nonlinear regression. In addition, since the trial and error
fitting process with MATLAB is somewhat tedious, means of

automation to generate parameters k1 to k13 should be im-
plemented in the future. Finally, since frequency dependancy
is desirable in some electromagnetic transient calculations, it
is necessary to improve the model to account for the rate of
change of magnetic flux.

VII. APPENDIX

• A(x) model parameters for the first test: k1 = 0.25,
k2 = 1.5, k3 = 0.5, k4 = 0.0, k5 = 0.05, k6 = 0.3,
k7 = 0.45, k8 = 0.0, k9 = 0.09, k10 = 0.5, k11 = 0.5,
k12 = 0.0, k13 = 2 · 10−3

• Simulation parameters for the first case: No initial
conditions, tmax = 0.15s, ∆t = 1µs

• A(x) model parameters for the second test: k1 = 53.88,
k2 = 0.01797, k3 = 0.0, k4 = 0.2001, k5 = 98.15,
k6 = 0.2375, k7 = 0.7796, k8 = −0.126, k9 = 393.9,
k10 = 1.248, k11 = 0.8129, k12 = 0.4969, k13 = 0.0257

• EMTP-RV hysteretic reactor model parameters for the
second test: Shv = 4353.7, Shh = 54.21, Chyst = 95.49,
Coer = 1.085, Ssv = 0.2883, Ssh = 5.91 · 10−6,
Csat = 944253.3, Ysh = 546.4

• Simulation parameters for the second case: Steady-state
initialization, tmax = 0.417s, ∆t = 10µs
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