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Abstract—This paper deals with the modeling of power 

transformers for calculation of switching transients based on 
mainly test report data. The paper is a follow-up of an IPST’07 
paper and discusses the modeling and implementation of core 
saturation and losses in the Hybrid Transformer.  A modified 
Frolich equation with knee-point adjustment and final slope 
handling is presented. The optimization process to fit the model 
to test report data is outlined and the modeling of topologically 
correct core loss is addressed. The inclusion of type 96 hysteretic 
inductors is presented. The final slope is a crucial parameter in 
inrush current calculations and requires design data. 
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I.  INTRODUCTION 

ransformers are critical components in the power system, 
but their representation in transient studies is often over-

simplified. Several modeling approaches are documented in 
the literature [1] and this paper focuses on models with 
topologically correct cores. The Hybrid Transformer model 
[2]-[5] is an engineering transformer model based on limited 
input data. The modeling of the transformer is based on the 
magnetic circuit transformed to its electric dual [2], [3]. The 
leakage and main fluxes are then separated into a core model 
for the main flux and an inverse inductance matrix for the 
leakage flux. The copper losses and coil capacitances are 
added at the terminals of the transformer. The resulting 
electrical circuit is shown in Fig. 1. Only standard EMTP 
elements are used.  

The model can be based on three sources of data: Design 
(specify geometry and material parameters of the core and 
windings), Test report, and Typical (typical values based on 
the voltage and power ratings). It handles 3-phase 
transformers with two or three windings. Autotransformers 
and all Wye and Delta couplings are supported. The model 
includes an inverse inductance matrix for the leakage 
description, optional frequency dependent winding resistance, 
capacitive coupling, and a topologically-correct core model 
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with individual saturation and losses in legs and yokes. 
Triplex, 3- and 5-legged and shell-form transformer cores are 
handled. 

 
 
Fig. 1. Electric model of the Hybrid Transformer [4], 2-windings (H and L), 3-
phases, 3-legged core. 

II.  ENHANCED CORE MODELING 

The core saturation curve in the Hybrid Transformer was 
initially [5] modelled with the Frolich equation as shown in 
(1).  
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where the constants 2/ ( )m L La a l N A    and 

/ ( )m Lb b N A   are based on the absolute length (lL) and 

cross section area (AL) of the core leg. The parameter a 
controls the slope at low excitations thus am is the inverse of 
the initial permeability. The parameter b controls the 
saturation and bm is the inverse of the complete saturation flux 
density which typically is around 2 T. For other core sections 
than the leg, the respective core dimensions must be used 
leading to the general formulation 
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where Ar and lr now are the relative core dimensions 
referred to the leg. The flux-linkage is as seen in (2), scaled 
with the area and the current with the length. 

 
The original function (2) is now proposed extended with 

two new parameters; c and L∞ as shown in (3). The c 
parameter improves the fitting to the test report values around 
the knee area whereas L∞ corresponds to the final slope. The 
two parameters were earlier introduced in [6]. 

T



 
/

( ) / /
| | / | | /

i l
ri A L i l

r ra b i l c i l
r r

      
  (3) 

 
The final slope is in the magnetic case equal to 0 and in 

the electrical case this transfers to 
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While a, b, and c can be obtained from test-report data in 

a fitting process, as described next, the L∞ parameter has to be 
based on design parameters. L∞ is a very crucial parameter for 
inrush calculations as seen in [7]. Air-core inductance can be 
provided by manufacturer and is used in analytical inrush 
current calculations. In the Hybrid Transformer this air-core 
inductance is split between the standard leakage inductance, 
the additional leakage between the inner winding and the core 
and the final slope inductance. The actual splitting is 
dependent on the width of the windings [7]. 
 One drawback with the new formulation in (3) is that an 
analytical inverse function for the current, given the flux-
linkage cannot be easily obtained (in contrast to (2)). A 
numerical approach using Newton’s method is used in the 
Hybrid Transformer, using the analytical current at c=0 as a 
starting point. 
  
 ( ) ( , , , | , , )r ri g a b c l A L    (5) 

III.  OPTIMIZATION METHODS 

The Hybrid Model uses an optimization strategy in order 
to obtain the a, b, and c values in (3) from the open circuit test 
report. An object function is defined as shown in (6) where 
the a, b, and c values minimizing this function is searched for. 
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Fig. 2. Optimization principle. 

 
In [5] a Golden Search method [8] was used. This 

approach involved sequential and iterative search for optimal 
(a, b (and c)) values. The main challenge with this approach 
was the discontinuous current function in (2), where for 

' /rA b   there exists no current solution. This was further 

complicated when the parameter c was introduced. To 
increase the robustness of the optimization routine a Genetic 
Algorithm [9] was later introduced. Such a routine is good at 
handling discontinuities but is on the other hand rather slow. 
Furthermore it was observed that the routine had a tendency to 
arrive at not exactly reproducible results even if the random 
generator was carefully reset.  

The introduction of the L∞ parameter in (3) has the big 
advantage that the inverse function in (5) (although not 
analytical) becomes continuous with an always existing 
derivative. This enables the introduction of a gradient based 
method. The L-BFGS-B routine [10] (limited memory 
algorithm for bound constrained optimization) which is a 
quasi-Newton method with numerical calculation of the 
gradient was chosen. The routine requires evaluation of the 
cost function and its derivatives with respect to the variables 
(a, b, c). The gradient is calculated based on the central 
difference formula: 
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where x is the variable (a, b or c) and the discretization 
interval h = 10-6. If n is the number of variables in the 
optimization problem the cost function thus has to be 
evaluated 2n+1 times for each solution point. The iteration 
number is somewhat loosely defined in the routine. If the 
solution is poorer than the previous point the algorithm steps 
backwards along the gradient until an improved solution is 
found and only then the iteration number is incremented. The 
routine arrives always to the same (local) minimum point with 
the same starting point so reproducibility is achieved. There is 
a guarantee for a real global minimum only if the problem is 
convex without local minima.  All tests show that this is the 
case for the problem in (6) although this has not been 
mathematically proven. The time consumption for arriving at 
a minimum went down from around 30 seconds (with the 
Genetic Algorithm) to 1 second (with the Gradient Method). 

   
Fig. 3. 5-legged core model [2] 
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For a single phase core (triplex) and also a shell form core 
the cost function is easily formulated [2] and its calculation is 
fast. But for a 3-legged core with zero-sequence paths 
considered and a 5-legged core (Fig. 3) the optimization 
process is complicated. Calculation of the rms value of the 
currents flowing into the core windings  with known 
flux-linkage sources 1 and 2 (and guessed a, b, c values) 
requires calculation of the neutral flux . This flux is found 
from the boundary equation [2]: 

 
 i4+i5+i6+i7=0  (8) 
 
which based on (5) and Fig. 3 is composed of 

4 7

5 1

6 2

( , , , | , , )

( , , , | , , )

( , , , | , , )

ro ro

ry ry

ry ry

i g a b c l A L i

i g a b c l A L

i g a b c l A L

 

 

 

  
  

  

 (9) 

with  

1

2

2 / sin( )

2 / sin( 2 / 3)

i

i

V t

V t

     

      
 (10) 

From the boundary equation (8) the neutral flux-linkage  
is found iteratively using Newton’s method. For a 5-legged 
core this flux-linkage looks typically (with rated values from 
Table I) as shown in Fig. 4, while for a 3-legged core it is very 
close to zero. The neutral flux-linkage is symmetrical around 
2/3 and this is utilized in the calculation to increase the 
calculation speed. 

The calculation of the neutral flux-linkage  is the most 
time consuming part of the optimization process. As shown in 
Fig. 5 the calculation has to be performed in the inner loop of 
the cost function evaluation and is thus time-critical. 
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Fig. 4. Flux-linkages in a 5-legged core. The flux-linkages 1 and 2 are the 
two sources used in the calculation, while  is the neutral flux-linkage. 

IV.  CORE LOSS  MODELING 

Core loss modeling is a topic that still requires more 
research. Separation of losses in eddy-current, hysteresis and 
excess losses and the further separation into sections of the 
core is complicated [11, 12]. The original implementation [5] 
had several weaknesses in its core loss representation. 

 
Fig. 5. Cost function evaluation process. 

 

A.  Hysteresis 

Evaluation of inrush currents requires the magnetization 
inductances to be initialized according to the residual flux. 
The implemented Hybrid Model [5] did not allow 
initialization, however. The approach with resistors 
representing the core loss in parallel to the magnetization 
inductance will also prevent the model arriving at residual 
flux. In [7] a true hysteretic core model based on Jiles-
Atherton theory was used. Such a model is however very 
demanding when it comes to computational resources, 
numerical issues, and parameter estimation. Even the 
complicated Jiles-Atherton model (with constant parameters at 
least) did not represent core losses well with increasing 
excitation. Here, a more simplistic approach is suggested 
where a type 96 hysteretic inductor is used instead.  

The core loss is split in two equal parts. One part is 
attributed to eddy current losses and are included in a parallel 
resistor. The other half is assigned to hysteresis losses and is 
included in the type 96 component. The hysteresis losses PH 
are further scaled to the maximum excitation with a Steinmetz 
coefficient of 2 as shown in (11) which seems reasonable 
according to [11]. 
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where P is the rated core loss (at rated) for the involved 
section of the core. max is the final point of the hysteresis loop 
as shown in Fig. 6.  

The width of the hysteresis loop is assumed to be constant 
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(but goes to zero at the second highest flux-linkage point) and 
calculated as 
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where f is the power frequency and the flux-linkages np-1 

and np-2 are given in  the piece-wise nonlinear curve of Fig. 6 
and their sum multiplied by the width W becomes the area of 
the hysteresis loop. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Construction of the hysteresis curve in the type 96 component. 
 

B.  Core loss topology 

The inductive and resistive parts of the core were in the 
original Hybrid Model separated both in the evaluation and 
modeling as shown in Fig. 7a). This type of modeling 
approach manages to reproduce rated test report values, 
although the linear resistor approach only is reasonable for a 
rather narrow band of excitations. The topology is however 
not correct and this can have some significant consequences 
for unbalanced excitations. In general, the aim should 
therefore be to establish a core model as shown in Fig. 7b). 
This is also required to use the hysteresis approach described 
above. 
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Fig. 7. 3-legged core model with a) artificial inductive and resistive separation 
(left), and b) Topological correct core losses (right). 
 

The core loss is split in parts associated with individual 
core sections. A basic assumption in [5] was that the core loss 
in a section is proportional to the volume of that section. And 
further that the equivalent core loss resistance was inversely 
proportional to the section loss, assuming a constant voltage 

across each element. This last assumption does not hold, 
however, at least not for a 5-legged core where the voltage 
across the yoke branch is different from the leg branch.  

In this paper it is proposed to let the core loss also change 
with the flux density and a Steinmetz coefficient of two is 
proposed. The flux density is further assumed proportional to 
the rms value of the voltage across the section. This gives the 
loss in a section 

2~r r r rP A l V   (13) 

where Ar and lr are the relative area and core section length, 
Vr is the ratio of the rms voltage across the section and across 
the leg (excitation voltage). Now, let the loss in the leg section 
be Pleg and the total measured core loss Pmeas. This gives losses 
in section: 
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for a 3-legged core (3 legs and 2 yokes) and 

2 23 2 2
meas

leg
ry ry ry ro ro ro

P
P

A l V A l V


       
 (16) 

for a 5-legged core (3 legs, 2 yokes, 2 outer legs) 
 
The resistance representing core losses in each section can 

now generally be written as 
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where Vi is the voltage across the leg (excitation). Only the 
rated excitation is utilized in this paper and the resistance is 
assumed to be constant. This is the same formulation as in [5] 
and the only difference lies in the calculation of the leg losses 
in (15) and (16).  

The challenge here is of course to determine the voltage 
across the yoke and outer leg sections. This involves working 
with the time derivatives of the fluxes in Fig. 4. 

V.  RESULTS 

The same test object as used in [5] is also used here as 
given in Table I. This is a 5-legged, 290 MVA GSU 
transformer where extended test report measurements are 
available, but no design information.  

 
TABLE I 

GENERATOR STEP-UP TRANSFORMER TEST REPORT 

Main data 
HS 
LS 

[kV] 
432 
16 

[MVA] 
290 
290 

[A] 
388 
10465 

Coupling 
YNj 
d5 

Open-circuit 
LS 

E0 [kV, (%)] 
12 (75) 
14 (87.5) 
15 (93.75) 
16 (100) 
17 (106.25) 

[MVA] 
290 
290 
290 
290 
290 

I0 [%] 
0.05 
0.11 
0.17 
0.31 
0.67 

P0 [kW] 
83.1 
118.8 
143.6 
178.6 
226.5 

Short-circuit 
HS/LS 

[kV] 
432/16 

[MVA] 
290 

ek, er [%] 
14.6, 0.24 

Pk [kW] 
704.4 

+
+

+

max 
np-1 
np-2 

 

i 

W 

b) Original           b) New, topologically-correct  



Fig. 8 shows the open circuit response of the proposed 
model as compared to the test report given in Table 1 and the 
XFMR and UMEC models investigated in [5]. The model in 
this paper gives somewhat reduced magnetization current for 
over-excitation than the similar model in [5]. This is because 
the final slope attribute has been added in this paper. The 
response still gives much higher current than the UMEC 
approach which in [5] used linear extrapolation beyond the 
last test report point.  
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Fig. 8 Model performance open circuit excitation, compared to test report and 
the investigation in [5]. 

 
Fig. 9 shows the inrush current for the proposed model 

compared to [5]. Simple piece-wise linear inductors (type 98) 
are used in this case and rated voltage is connected at the 
voltage zero crossing of phase A (worst case). As observed in 
the figure the inrush current is even higher in this model 
compared to the XFMR model in [5] even if the saturation in 
Fig. 8 apparently is higher. However, the final slope is 
actually lower in the proposed model and crosses the XFMR 
curve from [5] at very high excitations. The reason is that too 
little attention was paid to the final slope in [5] and that an 
artificial final slope was created in the conversion from the 
Frolich equation to a piece-wise linear curve. This also 
illustrates how critical the final slope is for the simulation of 
inrush currents. 

Fig. 10 shows the calculated core losses compared to the 
test report values in Table I. The core loss matches perfectly at 
1 pu excitation because this value is used in the fitting. The 
model does not show a so pronounced variation of the losses 
with excitation as the measurements. This is because a 
constant core loss resistance is used based on rated values. 

Using hysteretic inductors in the simulation can result in 
biased residual fluxes and a significant increase in the inrush 
currents. The type 98 inductors used for the simulation in Fig. 
9 were changed to hysteretic inductors type 96 embedding 
half of the core losses. The switching instant was the same 
except for a one period (20 ms) ramp-up time required to tune 
in the type 96 inductors; The switch opens at the zero crossing 
of phase voltage A and closes 40 ms later. As seen in Fig. 11 
the inrush current is reduced in this case since the residual 
flux is negative and opposing the current. 
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Fig. 9 Calculation of inrush currents compared to [5]. Switching in with zero 
residual flux at the zero crossing of phase A voltage. 
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Fig. 10. Core loss as a function of excitation level. 

 

 
Fig. 11. Effect of using hysteretic inductors (type 96). Integral of line-voltage 
LV side (left) and inrush currents (right). 

 
The approach in (14) for calculating the losses in each core 

section requires the voltage across the sections. These are 
found by taking the derivative of the flux-linkage differences. 
In this process it is assumed that the core loss resistors do not 
contribute to the core voltage balance. Fig. 12 shows the 
calculated core voltages of the complete model and the yoke 
flux-linkage found by integrating the yoke voltage. 

VI.  DISCUSSION 

The inclusion of the final slope of the saturation curve is 
critical for the accuracy of inrush calculations. The value of 
this parameter should be based on design information and is 
entered separately. Estimation based on (4) requires the am 
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magnetic material data parameter and the a parameter which is 
prone to fitting errors. Moreover, the final slope when added 
to the Frolic equation (3) enables a much faster fitting process 
by enabling the usage of a gradient method even if the 
involved functions (9) are not easily analytically obtainable. 
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Fig. 12. Core voltages across the yoke (VYOKE1 and VYOKE2), outer leg (VOUT), 
and the leg (VLEGA), along with the flux-linkage in yoke 1 (yoke1). 

 
The inclusion of a hysteretic type 96 inductor in the core is 

considered to be just an intermediate step in the model 
development. Such model is capable to arrive at residual flux 
after de-energization, as seen in Fig. 11, but is not good for 
transient analysis. The 50 % split between hysteresis and eddy 
current losses (ignoring anomalous losses) can be discussed 
likewise the assumed rms voltage section loss dependency. 
There is a tendency that hysteresis losses are smaller for 
modern core materials. Likewise the hysteresis losses depend 
on the average rather than the rms value of the voltage [12]. 

The voltage in the core model is assumed to be governed 
by the flux alone and the actual interaction between the 
inductive and resistive elements is ignored. Fig. 12 shows 
simulated core voltage waveforms but these are not available 
in the parameter estimation process. As seen when comparing 
Figs. 4 and 12, the actual flux-linkage is somewhat larger than 
the estimated indicating that the core resistors will influence 
the core voltage distribution and thus the flux. A harmonic 
analysis of the core voltages in Fig. 12 showed that these 
voltages contain a large amount of 3rd harmonics (~53 %). 
This will complicate the core loss modeling even further as 
the split between eddy current and hysteresis losses is 
frequency dependent [12].  

VII.  CONCLUSION 

The Hybrid Transformer Model is enhanced with an improved 
core model. This involves 
 Final slope of the saturation curve. Design parameters 

(absolute core leg dimensions and turn number) are 
required to estimate the value. 

 Topologically-correct core loss representation by 
consideration of flux density and core section voltage. 

 A hysteretic core model which enables residual flux and 

self-initialization. 
The inclusion of the final slope also enabled a much faster 
optimization process for test report fitting. All features 
described in this paper are implemented in ATPDraw ver. 5.6.  
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