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Evaluation of Performance of FACTS based Phase
Imbalance Schemes for Damping Torsional

Oscillations and Power Swings
Mahipalsinh C. Chudasama, S. R. Joshi and A. M. Kulkarni

Abstract—Recent investigations have focused on the use of
active phase imbalance schemes using series connected FACTS
devices for subsynchronous resonance (SSR) and power swing
damping. This paper compares the effectiveness of TCSC and
SSSC based single phase compensation schemes with the corre-
sponding three phase schemes. Controllability of swing modes
as well as torsional modes is compared by using a simplified,
dynamic phasor based expression of the linearized electrical
torque of a synchronous machine connected to a compensated
transmission line. The analysis and simulation studies show that
a single phase scheme is unlikely to be an attractive alternative
to a three phase scheme from a cost and sizing perspective.

Index Terms—SSR Mitigation, Phase imbalance, Dynamic
phasors, TCSC, SSSC

I. I NTRODUCTION

Compensation of transmission line reactance using fixed
capacitors is an economical and effective technique to

enhance the power transfer capability of transmission lines
[1]. However, such systems are prone to adverse interaction
with the turbine-generator shafts due to the Sub-Synchronous
Resonance (SSR) phenomenon [2]. The use of controlled se-
ries compensation - Thyristor Controlled Series Compensator
(TCSC) or Static Synchronous Series Compensator (SSSC)
[1], [3] in conjunction with fixed capacitor compensation, is
one of the possible solutions to the problem. The effectiveness
of this solution depends on the relative sizing of fixed capacitor
and the TCSC/SSSC based variable compensation, and the
control strategy used for the control of the TCSC/SSSC.

It has been conjectured that introducing phase imbalance
in a series compensation scheme can be an effective counter-
measure for SSR [4], [5]. Although the overall steady state
compensation is equal in all phases, it is achieved via different
combinations of reactors and capacitors in the three phases
(passive phase imbalance scheme). A recent study of a passive
imbalance scheme [6] indicates that it can not be a general
SSR countermeasure.

An alternative is to use different relative sizes of fixed
capacitors and TCSC/SSSC based controlled compensation
in the three phases, while keeping the overall steady state
compensation same in all the phases. The schematic of such
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schemes are shown in Figs. 1. Recent investigations have
focused on the use of theseactive phase imbalance schemes
not only for SSR mitigation but also for power swing damping
[7]–[9]. It is understood that if the critical torsional modes or
the low frequency swing modes are controllable by varying
balanced or unbalanced injected reactance or voltage, thenit
should be possible to improve their damping by appropriate
control. However, the actual effectiveness depends on the
magnitude of modal controllability - which determines the
amount of control effort required to get a certain damping
performance. The control effort is correlated to the dynamical
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range of the controllable device and its cost.
This paper presents the application of dynamic phasor

analysis and digital simulation to evaluate controllable phase
imbalance schemes and compare them with balanced schemes.
Modal controllability is compared by evaluating the simplified
expression of linearized electrical torque of a synchronous
machine. Not unexpectedly, it is seen that the controllability
for a single phase scheme is exactly one-third of that in the
three phase case. This is true when network transients are
considered (SSR study) as well as when they are neglected
(power swing study).

To validate this analysis using simulation, we first consider
the SSR performance of constant firing angle control for TCSC
and constant reactive voltage injection for a SSSC. Here, SSR
avoidance is by the detuning or passive damping ability of
these devices. The simulation studies confirm that the variable
compensation size requirement to stabilize both torsionaland
swing modes is much larger in the single phase case. Since it is
better to design specific damping controllers in order to utilize
the devices better, a comparison with the use of damping
controllers is also carried out. It is seen that good damping
is achieved with reasonable gains and dynamic range for the
three phase balanced case, while it is difficult to achieve the
same for single phase schemes. The analysis and simulation
study show that a single phase scheme is unlikely to be an
attractive alternative to a three phase scheme from a cost and
sizing perspective.

The paper is organized as follows. An introduction to
dynamic phasor models is given in section II. Derivation
of controllability factors for a Single Machine Infinite Bus
(SMIB) system with simplified models is shown in the next
section. Digital simulation results with detailed models are
presented in section IV.

II. DYNAMIC PHASOR MODELING

The aim of the analysis presented in the next two sections
is to obtain analytical expressions for electrical torque using
a simplified model of a synchronous machine and a com-
pensated transmission line. Since unbalanced compensation
is considered in the analysis it is convenient to use dynamic
phasor modeling because it yields a time-invariant model of
the system. We first present the essentials of dynamic phasor
modeling which is followed by the simplified analysis.

Any periodic waveform (possibly complex) can be repre-
sented in terms of the complex Fourier coefficients as given
in the following:

x(τ) =
∞
∑

k=−∞

〈x〉k(t)ejkωsτ τ ∈ (t− T, t] (1)

whereωs =
2π
T .

Dynamic phasors are the state variables in the dynamic phasor
based models.〈x〉k represents thekth dynamic phasor of the
instantaneous signalx(t) and can be computed as follows:

〈x〉k(t) =
1

T

∫ t

t−T

x(τ)e−jkωsτdτ (2)

The derivative of the dynamic phasor is given by [10]:

d〈x〉k
dt

=

〈

dx

dt

〉

k

− jkωs〈x〉k (3)

Note that if x(t) is periodic with a periodT , then the
dynamic phasor〈x〉k(t) is a constant.

The basic equations in “abc” variables are transformed to
positive, negative and zeros sequence variables using following
transformation.

fpnz =





fp
fn
fz



 =
1√
3
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fa
fb
fc





where, a = ej2π/3 = 1∠1200.
The equations in terms of sequence variables are then

converted to dynamic phasor form using (2) and (3).

III. S IMPLIFIED ANALYSIS

Before proceeding for a digital simulation using detailed
models, we carry out a simplified analysis using a simple
(voltage behind reactance) generator model.

Torsional and electro-mechanical modal damping can be
evaluated by considering the linearized second order differ-
ential equation for modal rotor angle deviation [2]:

2Hm

ωB

d2〈∆δm〉0
dt2

= −〈∆Te〉0 (4)

whereHm is the modal inertia,ωB is the base speed,δm is the
modal rotor angle as defined in [2], and∆Te is the linearized
electrical torque. Mechanical torque input is assumed to be
constant.

If the mode shapes (eigenvectors) for these modes are
assumed to be unchanged due to the compensation, and
damping is low, then the damping and synchronizing effects
can be evaluated by obtaining the transfer function between
the linearized electrical torque and the generator rotor angle
/ speed deviations [2] at the modal frequencies (damping and
synchronizing torque coefficients). In addition, the transfer
function between the linearized electrical torque and the
controlled variable (for FACTS devices) will give us the modal
controllability with the use of these devices.

Therefore our aim is to obtainlinearized expressions of
electrical torque under the following circumstances:

1) Network Transients neglected (for study of low frequency
power swings) and reactance modulation.

2) Network Transients considered (for SSR studies) and
a) With series voltage modulation - to understand the
effect of a SSSC
b) With modulation of current through a capacitor - to
understand the effect of a TCSC

The analysis is facilitated by the time invariant nature of
the balanced/unbalanced network equations when they are
formulated using dynamic phasors. The derivation follows the
approach given in [6]. An outline of it is presented below.

The linearized torque and “internal” voltage of the generator
are given by [2]:

∆Te = E′∆iQ

∆eQ + j∆eD = ∆(
ω

ωB
E′

∠δ) =
E′

ωB
∆ω + jE′∆δ
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(eD, eQ, iD, iQ) are the generator internal voltage and current
components in the synchronously rotatingD-Q frame of
reference.ωE′/ωB is the magnitude of the voltage behind
the generator reactance.

It is assumed here, for simplicity, that the generator is op-
erating at no load, i.e., the quiescent currents of the generator
(iD0, iQ0) and the quiescent value ofδ are zero. The quiescent
frequency is equal toωs which is also equal to the base
frequencyωB. Therefore:

〈∆Te〉0 = E′〈∆iQ〉0; 〈∆δ〉0 =
1

s
〈∆ω〉0

〈∆eD〉0 = E′〈∆δ〉0; 〈∆eQ〉0 =
E′

ωB
〈∆ω〉0

We can rewrite this in terms of dynamic phasors of sequence
components by using the relationships between theD−Q and
p− n dynamic phasors - see [6]:

〈ep〉1R =
1√
2
〈eD〉0 and 〈ep〉1I = − 1√

2
〈eQ〉0 (5)

〈ip〉1R =
1√
2
〈iD〉0 and 〈ip〉1I = − 1√

2
〈iQ〉0 (6)

where the subscriptsR andI denote real and imaginary com-
ponents. The currents and voltages are related by the equations
of a network. For a series compensated RLC network, the
equations are given by [6]:

d

dt
〈ipnz〉1 = −ωBBLRm〈ipnz〉1 − ωBBL〈vc pnz〉1

+ωBBL〈Epnz〉1 − jωB〈ipnz〉1 (7)

(where, Epnz = epnz − eB pnz)

d

dt
〈vc pnz〉1 = ωBXC〈ipnz〉1 − jωB〈vc pnz〉1 (8)

where i and vc represent line current and capacitor voltage
respectively.e and eB are the instantaneous values of the
generator voltage behind reactance and infinite bus voltage
respectively.ωB is the rated (base speed) in rad/s. Subscript
‘1’ is used to represent the dynamic phasors corresponding to
fundamental frequency (k = 1).

Moreover,

Rm =





Rp 0 0
0 Rp 0
0 0 Rz



 ; XC = P−1





Xca 0 0
0 Xcb 0
0 0 Xcc



P

BL =















1

Xp
0 0

0
1

Xp
0

0 0
1

Xz















; P =
1√
3





1 1 1
a2 a 1
a a2 1





where,Xp andXz are the positive sequence and zero sequence
reactances of the line, which include the generator sub-
transient reactance.Rp andRz are positive sequence and zero
sequence resistances.Xca, Xcb and Xcc are the capacitive
reactances of different phases of the RLC series network.

If network equations inabc variables are linear time-
invariant as above, then there is no coupling between dynamic
phasors corresponding to variousk. However, with imbalance

there is coupling between thep, n andz variables for a given
k.

Note that it is adequate to consider onlyk = 0 for
the mechanical variables andk = ±1 for the electrical
variables, since these dynamic phasors are decoupled from
those corresponding to other values ofk, due to the use of the
simplified generator model.

A. Series Reactance Modulation: Network transients ne-
glected

For the study of low frequency power swings, we can ne-
glect the network transients i.e.ddt〈ipnz〉1 = 0 and d

dt 〈vc pnz〉1
= 0. The network is in quasi-sinusoidal steady state and the
variable compensation (either by a TCSC or by SSSC) can be
represented by equivalent reactance modulation. In such a case
the linearized electrical torque expressions are given below.

1) Single Phase Imbalance Case
The capacitive reactance of only one phase is variable,
i.e. Xca = Xcb = Xc andXcc = Xc +∆x.

〈∆Te〉0 =
E′

3

{

2GpBp(1− E′ cos δ0)
−(G2

p −B2

p)E
′ sin δ0

}

∆x

+GpE
′2
〈∆ω〉0
ωB

−BpE
′2〈∆δ〉0 (9)

where,

Gp =
Rp

R2
p + (Xp −Xc)2

; Bp =
−(Xp −Xc)

R2
p + (Xp −Xc)2

δ, andω are the angle and speed of the generator rotor
mass.

2) Balanced Case
In this case equal variations are applied to capacitive re-
actances in all phases. i.e.Xca = Xcb = Xcc = Xc+∆x
which gives,

〈∆Te〉0 = E′

{

2GpBp(1 − E′ cos δ0)
−(G2

p −B2

p)E
′ sin δ0

}

∆x

+GpE
′2
〈∆ω〉0
ωB

−BpE
′2〈∆δ〉0 (10)

It is observed from (9) and (10) that the controllability of
single phase imbalance scheme is one third of balanced three
phase scheme.

B. Analysis with TCSC: Network transients considered

For SSR analysis one has to consider network and stator flux
transients. In order to simplify the analysis, the TCR branch
of a TCSC is modelled as a controlled current source. The
single line diagram for the system with a TCSC is shown in
Fig. 2. The dynamic phasor model for the system shown is
given below.

d

dt
〈ipnz〉1 = −ωBBLRm〈ipnz〉1 + ωBBL〈Epnz〉1

−ωBBL〈vc pnz + vc1 pnz〉1 − jωB〈ipnz〉1 (11)
d

dt
〈vc pnz〉1= ωBXC〈ipnz〉1 − jωB〈vc pnz〉1 (12)

d

dt
〈vc1 pnz〉1= ωBXC1〈ipnz − iTC pnz〉1

−jωB〈vc1 pnz〉1 (13)
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If the transfer function of the electrical torque is evalu-
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Fig. 2. Series compensated SMIB system with TCSC

ated for a torsional mode frequency which is nearest to the
subsynchronous network frequency (imaginary part ofλ as
given below), then the transfer function is dominated by the
following term :

〈∆Te〉0(jΩ) ≈ −
E′2ωB(Rp + jX ′

p)

4XpX ′

p(jΩ− λ)
〈∆δ〉0(jΩ)

−
jE′2(Rp + jX ′

p)

4XpX ′

p(jΩ− λ)
〈∆ω〉0(jΩ)

+

√
2E′ωBXc1(R

2

p +X ′2

p )

8XpX ′

p(Xc +Xc1)(jΩ− λ)
〈∆iTCp〉∗1(jΩ)

(14)

where, X ′

p =
√

4Xp(Xc +Xc1)−R2
p

λ =
ωB

2Xp

{

−Rp + j(2Xp −X ′

p)
}

1) Single Phase Imbalance Case
In this case we consider perturbation in TCR branch
current of only one phase ( i.e.∆iTCa = ∆I sin(ωBt+
φ), ∆iTCb = ∆iTCc = 0), which results into

〈∆iTCp〉1(jΩ) =
∆I

2
√
3j

ejφ

2) Balanced Case
Here we consider balanced three phase perturbation in
TCR branch currents (i.e.∆iTCa = ∆I sin(ωBt +
φ), ∆iTCb = ∆I sin(ωBt − 2π/3 + φ) and ∆iTCc =
∆I sin(ωBt+ 2π/3 + φ) ). This scheme has,

〈∆iTCp〉1(jΩ) =
√
3∆I

2j
ejφ

By substituting these results in (14) we can conclude that
controllability of single phase imbalance scheme is, again, one
third of that for the balanced scheme.

C. Analysis with SSSC (Network transients considered)

Static synchronous series compensator (SSSC) is modeled
as a controlled voltage source in series with the transmission

line. Single line diagram for the series compensated system
with SSSC is shown in Fig. 3. The dynamic phasor model for
this system is:

d

dt
〈ipnz〉1 = −ωBBLRm〈ipnz〉1 + ωBBL〈Epnz〉1

−ωBBL〈vc pnz + vSC pnz〉1 − jωB〈ipnz〉1 (15)
d

dt
〈vc pnz〉1= ωBXC〈ipnz〉1 − jωB〈vc pnz〉1 (16)

Applying same procedure as in the previous case,
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Fig. 3. Series compensated SMIB system with SSSC

〈∆Te〉0(jΩ) ≈ −
E′2ωB(Rp + jX ′′

p )

4XpX ′′

p (jΩ− λ1)
〈∆δ〉0(jΩ)

−
jE′2(Rp + jX ′′

p )

4XpX ′′

p (jΩ− λ1)
〈∆ω〉0(jΩ)

+

√
2E′ωB(Rp + jX ′′

p )

4XpX ′′

p (jΩ− λ1)
〈∆vSCp〉∗1(jΩ) (17)

where, X ′′

p =
√

4XpXc −R2
p

λ1 =
ωB

2Xp

{

−Rp + j(2Xp −X ′′

p )
}

1) Single Phase Imbalance Case
In this case we consider perturbation in SSSC injected
voltage of only one phase (i.e.∆vSCa = ∆V sin(ωBt+
φ), ∆vSCb = ∆vSCc = 0), which results into

〈∆vSCp〉1(jΩ) =
∆V

2
√
3j

ejφ

2) Balanced Case
Here we consider balanced three phase perturbation
in SSSC injected phase voltages (i.e.∆vSCa =
∆V sin(ωBt + φ), ∆vSCb = ∆V sin(ωBt − 2π/3 + φ)
and∆vSCc = ∆V sin(ωBt+ 2π/3 + φ) ). This scheme
gives,

〈∆vSCp〉1(jΩ) =
√
3∆V

2j
ejφ

By substituting these results in (17) we get the same conclu-
sion as in the previous cases.
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IV. SIMULATION RESULTS WITH DETAILED MODELS

In order to verify the results derived in previous section,
digital simulation was carried out with detailed generator
model using MATLAB/SIMULINK [11]. The test system
is adapted from IEEE First Benchmark Model (FBM) [12].
The single line diagram of the system is shown Fig. 4
network parameters are also shown therein. The FBM has
several closely spaced torsional modes and hence it is a
good system to critically evaluate the SSR performance of
a scheme. Mechanical (viscous) damping is considered for
the test system and the coefficients for damping are taken as
DHP = DIP = DLPA = DLPB = 0.2 pu torque/pu speed,
DG = DEXC = 0 [2]. The maximum value of balanced fixed
capacitor compensation which can be used is approximately
XFC = 0.15 pu, since any value higher than this causes the
network mode to come close to a torsional mode and causes
it to be unstable. This is evident from the eigenvalue analysis
for two values ofXFC presented in Table-I. Torsional mode
5 is unaffected by the electrical network [2].

TABLE I
EIGEN VALUES OF THE SYSTEM: NO VARIABLE COMPENSATION

XFC = 0.15 pu XFC = 0.19 pu Remarks
-0.674±j9.099 -0.719±j9.377 Swing mode
-3.799±j219.65 -4.660±j200.76 Sub synch. network mode
-4.624±j533.82 -4.647±j553.51 Super synch. network mode
-0.145±j99.237 -0.144±j99.29 Torsional mode 1
-0.024±j127.03 -0.024±j127.04 Torsional mode 2
-0.304±j160.67 -0.297±j160.72 Torsional mode 3

0.017±j203.29 1.021±j202.4 Torsional mode 4
(TM4 - Critical Mode)

-0.364±j298.18 -0.364±j298.18 Torsional mode 5

It is clear for the maximum feasible level of fixed series
compensation, that torsional mode 4, denoted henceforth as
‘TM4 ’, is the critical mode. If a larger value of overall
compensation is desired, then it cannot be entirely in the form
of fixed capacitor compensation but will require controlled
compensation in the form of a TCSC or SSSC.

The case studies reported in this section focus on the SSR
damping performance of the FACTS based schemes. The
studies fall under the following categories:

1) Balanced and unbalanced schemes with fixed capacitor
combined with a TCSC or a SSSC. The control schemes
for a TCSC or a SSSC are rudimentary: fixed firing angle
for a TCSC, and fixed reactive voltage injection for a
SSSC. The aim of this study is to evaluate SSR mitigation
due to detuning and passive damping effects.

2) The same study as above, except that the firing angle
or injected voltage of a TCSC or SSSC respectively, is
controlled by a SSR damping controller.

A. Simulation Studies with TCSC: Constant Firing Angle
Control

We assume that the total steady state compensation in all
phases due to a TCSC and fixed capacitor (XFC+XTCSC) is
a constant. The balanced and unbalanced configurations are as
shown in Fig. 1. Keeping this total steady state compensation
unchanged, we do a parametric study for

Exc Gen IP HP

Turbine

Bus

LPB LPA

Infinite

OR

All data are in pu on generator MVA base _ +

Converter

Voltage
Source

Pg = 0.5

Vg = 1.0

Pg

Vg

Eb

Eb = 1.0∠00

XLRL
XFC Xsys

XT

vSC

i

i

iSC = i

VDC

Xeq

Xeq = XTCSC =
vSC

i0

892.4MVA

XL = 0.50 XL0 = 1.56

RL = 0.02 RL0 = 0.50

Xsys = 0.06

XTL

XTC

XTCSC

XT = 0.14

Fig. 4. IEEE First Benchmark Model (FBM)

1) Different firing angles keepingXTC fixed, or
2) DifferentXTC keeping the firing angle fixed.

It is expected that a TCSC will avoid SSR due to detuning
effects; however this is a function of the TCSC sizing relative
to XFC and the firing angle of the TCSC [13] and is not
generally true. For example, consider the situation ifXFC =

0.15 pu,XTC = 0.04 pu, the ratioωn

ω0

=
√

XTC

XTL
= 2.8, where

ωn is the natural resonance frequency of TCSC andω0 is the
nominal system frequency in rad/s.

Note that the test disturbance is a step change in mechanical
power of all the turbines which is applied att = 0.5s. This
excites all torsional modes and the electromechanical swing
mode. Modal speed deviations are plotted to observe the effect
of disturbance on individual modes separately. Note that in
the simulation responses, the modal speed deviation∆ωMl

corresponding to the mode “l” is approximately obtained as
follows:

∆ωMl = qTl [∆ωHP · · · ∆ωExc]
T

where, qTl is a vector containing the left eigenvector com-
ponents corresponding to individual angular speed devia-
tions of the rotor masses of the turbine-generator system
(∆ωHP · · · ∆ωExc).

If firing angle is α = 1700, then TM4 is unstable [14],
which is observed in the modal speed deviations shown in
Fig. 5, for the balanced case. However if the firing angleα is
reduced, we can stabilize the torsional modes (see-Table-II).

The real parts of eigen value (decrement factors) corre-
sponding to TM4 are shown to compare the effectiveness of
the schemes. These values are calculated from the simulated
responses of the modal speed. It is observed that for fixed
firing angle control, the three phase scheme can stabilize
the torsional mode-4 (TM4) whenα = 1550 whereas the
single phase scheme fails to stabilize the system. Modal speed
deviations corresponding to TM4 with different firing angles
for single phase and three phase schemes are shown in Figs.
6 and 7 respectively. These plots also highlight the same fact.
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Fig. 5. Modal speed deviations for balanced scheme with TCSC(α = 1700)

TABLE II
COMPARISON OF REAL PART OF EIGEN VALUES WITH FIXEDXTC

Firing angle
(degree)

Reactance
XTCSC

(pu)

Real part of eigenvalue (TM4)
(Estimated from simulated responses)

Single phase
scheme

Three phase
scheme

160 0.049 0.555 0.104
155 0.067 0.486 -0.037
153 0.085 0.474 -0.075
150 0.179 0.406 -0.101

XTC = 0.04 pu, ωn/ω0 = 2.8, XFC +XTCSC = 0.191 pu

The schemes are evaluated with the firing angle of TCSC
fixed and the value ofXTC is changed. As done in the previous
cases, total series compensation i.e.XFC +XTCSC is main-
tained constant for all the cases. The results corresponding to
this approach are shown in Table-III. It can be concluded from
the results that three phase scheme is more effective compared
to single phase imbalance scheme for constant firing angle
control. For a single phase TCSC, detuning effect obtained
with constant firing angle control, cannot stabilize the unstable
torsional mode.

TABLE III
COMPARISON OF REAL PART OF EIGEN VALUES WITH FIXEDα

Blocked
mode

reactance
XTC (pu)

Reactance
XTCSC

(pu)

Real part of eigenvalue (TM4)
(Estimated from simulated responses)

Single phase
scheme

Three phase
scheme

0.04 0.049 0.555 0.104
0.045 0.055 0.542 0.065
0.06 0.074 0.498 0.013
0.08 0.098 0.476 -0.032
0.15 0.184 0.422 -0.095
α = 1600, ωn/ω0 = 2.8, XFC +XTCSC = 0.191 pu

B. Simulation with SSSC: Fixed Reactive Voltage Injection

A SSSC [15] is implemented by a voltage source converter
as shown in Fig. 1, which injects voltage in phase quadrature
with the current. The net active power exchange with the lineis
only to compensate for the losses. The injected reactive voltage
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Fig. 6. Modal speed deviations of TM4 with TCSC (single phasescheme)
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Fig. 7. Modal speed deviations of TM4 with TCSC (three phase scheme)

is regulated by controlling the phase angle of converter output
voltages with respect to the line current. The modulation index
of the controller is kept constant. The injected voltage is
directly proportional to the DC side capacitor voltage. Any
change in the reactive voltage is implemented by transiently
changing the phase angle of the converter voltages, thereby
changing the power drawn. This causes the capacitor voltageto
change. This control strategy is often termed as Type II control
[1]. An alternative control scheme (Type I - not used in this
paper), keeps the capacitor voltage regulated by controlling the
component in phase with the line current, but changes in the
modulation index of the converter are used to effect changes
in the injected voltage magnitude.

The following may be noted with reference to the simula-
tions carried out with a SSSC in this paper:

1) Converter transformer is assumed to be ideal i.e. mag-
netizing branch is not modelled and the series reactance
of transformer is assumed to be lumped with the line
reactance.

2) Six pulse conversion is considered. The system reactance
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TABLE IV
COMPARISON OF REAL PART OF EIGEN VALUES WITHSSSC

Injected
voltage per
phase (pu)

Real part of eigenvalue (TM4)
(Estimated from simulated responses)

Single phase scheme Three phase scheme
0.0142 0.412 0.011
0.0194 0.405 -0.035
0.0246 0.335 -0.055
0.0519 0.319 -0.068

XFC +
vSC

i0
= 0.191 pu for all the cases

provides adequate filtering action and the transmission
line current is almost sinusoidal.
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Fig. 8. Modal speed deviations of TM4 with SSSC (single phasescheme)
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Fig. 9. Modal speed deviations of TM4 with SSSC (three phase scheme)

The reference value of voltage injected in series in each
phase is computed such that it gives approximately the same
series compensation as was given by TCSC with various
firing angles as discussed in the previous system (i.e.vSC =
i0XTCSC) where,i0 is the line current magnitude in steady
state. The variation of real part of eigen value for TM4 with
SSSC is shown in Table-IV with different injected voltages.

The three phase scheme is more effective in damping torsional
oscillations compared to single phase scheme if injected
voltage is constant. Variation in modal speed deviation for
TM4 corresponding to single phase and three phase schemes
with SSSC are shown in Figs. 8 and 9 respectively.

C. Simulation with TCSC and SSR Damping Controller

The rudimentary control strategies for a TCSC and SSSC
discussed before, do not utilize the devices optimally. It is
preferable to design a special damping controller for SSR.
Output feedback control is preferred over state feedback for
almost all power system controllers that are used in practice.
Since complete pole placement is not feasible with output
feedback control, the challenge in the design of such a damp-
ing controller is to prevent destabilization of any mode, while
ensuring that the order of the controller transfer functionis not
impracticably high. To compare and quantify the theoretical
capabilities of the unbalanced and balanced schemes, it is
appropriate to expend the control effort only on damping the
mode of interest. If the feedback signal in which only the
critical mode is observable is used, then it would serve our
purpose without affecting other modes. Therefore the damping
controllers utilize the critical modal speed as a feedback signal.
The block diagram of the controller is shown in Fig 10. The
controller design is based on damping torque analysis [16].

For roughly the same damping performance, the gain and
controller effort is more (as expected) in the single phase
TCSC or SSSC scheme. This manifests as a larger range
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Fig. 10. Subsynchronous damping controller block diagram
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Fig. 11. Responses after a step change in mechanical torque alongwith
TCSC and SSR damping controller:α0 = 1600, XTC = 0.04 pu, Tw =

5 s, Tn = 0.05 s, Td = 0.0002 s
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of variable compensation required to get the same damping
performance for practical disturbances. This is evident from
Fig. 11 which shows the modal speeds andXTCSC with a
step change in mechanical torque. Controller parameters are
shown alongwith the responses. Similar results are obtained
with SSSC.

Note that the single phase controller requires a much larger
gain. This is not desirable in a practical controller, as larger
gains have a tendency to destabilize unmodelled dynamics.
Also, for controllers which utilize feedback signals in which
other modes are observable, the order of the controller may be
higher to ensure that the non-critical modes are not adversely
affected by the higher required gains.

D. Simulation with SSSC and Power Swing Damping Con-
troller

The Power Swing Damping Controller (PSDC) structure
with a SSSC is shown in Fig. 12. The modal speed correspond-
ing to the swing mode is used as the input signal. The total
series compensation is taken as 0.15 pu. An Automatic Voltage
Regulator (AVR) for the excitation system is modelled with a

transfer function
KA

1 + sTA
and the gain and time constant are

such that the swing mode is unstable.
The responses to the pulse disturbance in infinite bus voltage

are shown in Fig. 13. It is observed here also that for almost

Washout
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vSC min

vSC max

∆vSC
Kp

ωm =
ωHPHHP + ωIPHIP + · · · + ωExcHExc

HHP +HIP + · · · +HExc

Fig. 12. Power swing damping controller block diagram
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Fig. 13. Responses after a pulse change in infinite bus voltage with SSSC
and Power Swing damping controller:Tw = 5 s, KA = 600, TA =

0.006 s, vSC ref = 0.0142 pu/phase

the same damping performance, the required range of variable
compensation and the gain is larger for single phase scheme.

V. CONCLUSION

An analytical evaluation of the performance of FACTS
based phase imbalance schemes for damping torsional oscilla-
tions and power swings is presented in this paper. This analysis
is facilitated by dynamic phasor modeling since it yields a
time-invariant system of equations even for unbalanced three
phase networks.

Simplified analysis indicates that the damping torque pro-
vided by a single phase imbalance scheme is one third of
the three phase balanced scheme. Hence to achieve same
damping performance, the control effort and gains needed with
a single phase scheme will be much larger than an equivalent
balanced scheme. The time domain simulation results support
this. The results indicate that the cost and sizing requirements
and controller design complexity of a single phase scheme will
not be advantageous as compared to an equivalent balanced
three phase scheme.
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