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Abstract— This article proposes a hybrid technique to 

calculate the steady state solution of a network that includes 
linear/nonlinear elements and electronic devices considering 
interharmonics. The discrete Fourier transform (DFT) is chosen 
as a natural domain for the representation of interharmonics. 
Basically, the solution is obtained through partitioning of the 
network into linear and nonlinear parts, where the former is 
represented by its Thévenin equivalent. Initially, a voltage on the 
interface of the linear and nonlinear parts is proposed. By using 
the proposed voltage, the current entering the nonlinear part is 
internally found in the time domain and converted back into the 
frequency domain via DFT operations. Then, the resultant 
current is injected into the Thévenin equivalent. This results in 
an updated voltage at the interface. This iterative solution 
scheme permits to obtain interharmonic voltages and currents at 
the buses where nonlinear loads and electronic devices are 
connected. A Newton-type solution scheme is used to compare the 
Thévenin scheme proposed here, presenting the corresponding 
numerical issues and differences between both methods. 
 
   Index Terms—Fourier transforms, frequency domain analysis, 
interharmonics.1 

I.  INTRODUCTION 

NE of the traditional techniques for harmonic analysis in 
the power systems area is the Harmonic Domain (HD) 

[1]. The HD technique arranges the Fourier coefficients in a 
matrix/vector form to represent linear time-periodic systems. 
However, the HD is limited only to the analysis of integer 
multiples of the fundamental frequency of the electrical 
system. 

Due to the increasing inclusion of nonlinear loads and 
electronic devices in the power systems, it is also necessary to 
consider interharmonics in the analysis of voltages and 
currents of the network. 

This work uses a technique named modified harmonic 
domain (MHD) [2], which is based on the discrete Fourier 
transform (DFT) formulated in a matrix/vector form similar to 
the HD. In the MHD is possible to include non-integer 
multiples of the fundamental frequency, i.e., interharmonics 
[3]. Additionally, the MHD permits to analyze electrical 
systems in the presence of nonlinear loads and electronic 
devices by readily interfacing frequency and time domain. 
Those time-varying elements are solved in the latter. 

To determine the steady state of a purely linear network in 
the presence of interharmonics using the MHD, the procedure 
                                                           
Financial support from Conacyt-Mexico is gratefully acknowledged. 
M. Caixba and A. Ramirez are with CINVESTAV-Guadalajara, Mexico       
(e-mails: mcaixba@gdl.cinvestav.mx, abner.ramirez@cts-design.com ) 
 
Paper submitted to the International Conference on Power Systems 
Transients (IPST2011) in Delft, the Netherlands June 14-17, 2011 

is relatively simple. On the other hand, when the network 
contains time-varying elements as well as interharmonic 
sources, it is no longer a trivial task. The complexity is 
enhanced for large networks with many time-varying elements 
due to the need of Jacobians and matrix inversions in 
traditional techniques, such as Newton-type ones. 

This paper proposes the use of a Thévenin equivalent in the 
MHD for the linear part of the network. Time-varying 
elements are solved in the time domain in which either 
numerical integration or specialized software can be used. 
Interfacing the Thévenin equivalent and the resultant variables 
from the time-varying elements is made efficiently via DFT 
operations. Using an illustrative example, the method 
proposed here is compared with a Newton-type solution 
scheme [2]. 

The proposed method is based on compensation techniques 
where nonlinear elements are simulated as current injections. 
For instance, a two-iterative-loops method for calculating 
harmonics from transformer saturation is described in [4]. In 
[4], one iteration procedure is used to obtain an approximate 
solution at fundamental frequency and a second one is applied 
to incorporate higher frequencies (harmonics). In [5], a step-
by-step solution method to incorporate nonlinear elements into 
a general network is described. In this widely utilized method, 
local iterations are used to solve the nonlinear element at each 
time step; alternatively, the intersection of the linear network 
and the piece-wise approximation of the nonlinear element has 
to be found. Roughly speaking, there are three major 
differences between the proposed method and the ones from 
[4], [5]. Firstly, in the former no local iterative loops are 
needed. Secondly, the algebraic-based arrangement that takes 
all interharmonics at once makes the proposed method 
attractive for fast computations. Thirdly, interharmonics have 
been added in the proposed method.  

The inclusion of power flow constraints has been proposed 
in a harmonic power flow technique described in [6] and it 
represents a subsequent step in this research work, considering 
interharmonics. 

II.  MHD BASIC THEORY 

The MHD methodology is briefly described in this Section, 
for further details the reader can refer to [2]. 
 

A.  DFT Basic Relations 

The Fourier transforms are given by [7]: 
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where the pair (F, f) corresponds to the frequency domain 
signal and its time domain counterpart, respectively (assumed 
here as causal). Supplementary, in (1)  and t represent the 
angular frequency (in rad/s) and time (in s), respectively. 
Also, consider the discretization of (F, f) by using the 
definitions: 
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Then, (1) gives the corresponding inverse discrete Fourier 
transform (IDFT) and (DFT) expressed here as: 
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where T corresponds to the observation period of time, N is 
the number of samples of the signal, and  is a data window 
used for decreasing Gibbs phenomenon due to truncation. 

It can be noticed that the terms between square parentheses 
in (3a) and (3b) can be calculated efficiently through inverse 
fast Fourier transform (IFFT) and fast Fourier transform (FFT) 
algorithms, respectively [8].  

The discretization given by (2) and (3) permits to handle 
frequencies that are non-integer multiple of the fundamental 
power frequency, i.e., interharmonics [3]. The periodic steady 
state can be determined in a direct form by considering the 
DFT coefficients as constants. In a similar way to the HD, the 
transient behavior of interharmonics can be achieved from the 
consideration of the coefficients being slowly time-varying 
[9]. 

 

B.  Matrix-Vector Expressions 

In a similar way to the traditional harmonic domain, it can 
be demonstrated that the scalar ordinary differential equation 
given by: 
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can be converted into the algebraic system of equations: 
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Application of (3a) to each term in (5), matching the 
exponentials for each frequency, and expressing the resultant 
equalities in matrix-vector form leads to (6). In (6), the new 
variables are defined as (Tr denotes transpose): 
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Also, in (6) A (and B) corresponds to a Toeplitz-type 
matrix with the frequency content (not necessarily harmonics) 
of a as elements [10]. 

It is important to mention that the coefficient arrangement 
in (7a) corresponds to the IDFT formula as in (3); hence the 
subscript o corresponds to the DC component, subscript 1 to 
the  component, and so forth, until the N-th sample is 
represented. 

For the case in which the coefficients a and b are constant, 
(6) becomes: 

.                                     (8)X aX bV D  
 

Thus, the steady state can be calculated directly either from 
(6) or (8). 

It should be clarified at this point that from the total 
number of samples, N, only the frequencies under interest, Np, 
are taken into account for frequency domain calculations. 
Thus the MHD variables in (7) are handled as truncated 
variables, for more details please see [2].  

The network elements, which usually are represented by 
differential equations as in (5), can be then represented as 
admittances (or impedances) in the MHD as in (6). 

III.  THÉVENIN EQUIVALENT IN THE MHD 

A.  Solution Scheme    

The total network is represented by a Thévenin equivalent, 
which consists of the linear part of the network in the MHD, 
and elements with non-linear (or switching) features, as 
shown in Fig. 1. 
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Fig. 1. Network representation. 

 
In general, nonlinear elements or switching devices can be 

represented by a relation between voltage and current as: 
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or, in linearized form: 
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which will be used for the convergence analysis in a 
subsequent Section. 



The proposed technique is described by the following 
steps. It can be applied to single and multi-phase networks 
with one or more time-varying elements. 

 

Step 1.  Start with an initial guess voltage, 
0

V , at the interface 

of linear and nonlinear networks. With this value calculate the 
entering current into the nonlinear element or electronic 
device, INL. This calculation is efficiently done in the time 
domain. 
 
Step 2.  Application of Kirchhoff's voltage law to the 

Thévenin equivalent gives a new voltage, 
n

V , at the interface. 

 
Step 3. The new voltage Vn is replaced in step 1 as an 
improved guess voltage. The process is stopped until the 
following convergence criterion is satisfied: 
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or, until a pre-defined stopping iteration number. 

The flow-chart of the procedure outlined above is depicted 
in Fig. 2. 
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Fig. 2. Iterative solution scheme. 
 

 

B.  Convergence Analysis 

 
The following optional analysis may be performed to 

assure convergence before applying the method outlined in the 

preceding sub-section.  
 
In the proposed hybrid method the k-th iteration can be 

written as: 
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If 1kV  converges to eV  and ,NL kI  to NLeI , then (12) takes 

the form: 
 

(13).                           e Th NLeV V I  ThZ  

 
Subtracting (13) from (12) gives: 
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Using the linearized relation for the time-varying element 

(10), (14) becomes: 
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Thus the Thévenin process is characterized by the iteration 

matrix: 

(16).                             h ThT Z J  

 

All eigenvalues of hT  must be < 1 (in absolute value) to 

assure convergence and the largest eigenvalue gives the final 
(slowest) convergence rate, when all the faster modes have 
already converged. It can be noticed that the iteration matrix 
depends on parameters of the linear network and on the 
Jacobian of the nonlinear element. 

IV.  APPLICATION EXAMPLE 

A.  Network Description 

Consider the 10-bus network shown in Fig. 3 with the 
corresponding data described in the Appendix. The network is 
formed by ten distributed-parameters frequency dependent 
transmission lines with parameters calculated by using the 
complex ground concept [11]. Bus 7 has a nonlinear load [2], 
[12] and a TCSC [13] has been connected between buses 4 
and 5 with the aim of improving the power factor, based on 
the corresponding RL load. In addition to the fundamental 
power frequency, in the sources u1 and u2 it has been 
arbitrarily considered the injection of several interharmonics, 
as seen in (17) and (18). 

The MHD parameters are:  N = 1024 samples,  =377/4, 
and Np = 320 samples. Thus, interharmonics spaced at ¼ of 
the fundamental power frequency are represented. 
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Fig. 3. Distributed parameters network. 
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For bus 7, a nonlinear reactor has been considered with a 

current/flux relation given by  
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B.  Network Solution 

The network is represented by a Thévenin equivalent in its 
multiport version, which is shown in Fig.  4. 
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Fig. 4. Thévenin equivalent – multiport version. 

 
The total network can be represented by its nodal form as: 
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where I and V are vectors with the currents and voltages of the 
time-varying elements, respectively. Solving (20) for V, 
results  in: 
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     In this case the matrix dimensions in (21) are: 

11
Y (960x960), 

12
Y (960x2240), 

21
Y  (2240x960), and 

22
Y  

(2240x2240). 
 
   In the proposed methodology, it is suggested that, to obtain 
a better initial guess, the linear network be first solved. This 
can be obtained by taking an equivalent reactance of the 
electronic device and making zero the coefficient of the 
nonlinear term in the polynomial flux/current relation. 
According to the Authors’ experience, the linear network 
solution is usually achieved in two Thévenin iterations. 
 

C.  Numerical Results 

In Figs. 5 and 6 the voltage and the current between buses 
4 and 5 are shown. Their corresponding frequency content is 
depicted in Figs. 7. With reference to bus 7, the voltage and 
current in this bus are presented in Fig. 8. The corresponding 
frequency content is depicted in Fig. 9. From Fig. 9 it can be 
noticed the coupling of the sources frequencies and the 
generation of new frequencies as well. 

For comparison purposes, the results presented in Figs. 5 to 
9 were also obtained by using a Newton-type solution scheme. 

The computational time by using the proposed method is 
equal to 0.44 s while using Newton has resulted in 5.74 s; that 
is, about thirteen times faster with the former. Both methods 
were programmed under a Matlab® environment, the 
convergence tolerance has been set equal to 10–10 (reached in 
15 iterations for both of them). The computer used to obtain 
the results is a 2GB RAM, 3 GHz processor. 
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Fig. 5. Voltage at TCSC’s terminals and current into the TCSC. 

 
Finally, Fig. 10 shows the convergence pattern of both the 

Newton-type scheme and the Thévenin iteration technique 
proposed in this paper. It should be mentioned here that the 
convergence pattern from the latter in this particular example 
is not characteristic of the method; however, for several 
distinct parameters (results not shown here) the convergence 
pattern did not change substantially. 
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Fig. 6. TCSC entering currents. 
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Fig. 7. Frequency content of the voltage at TCSC’s terminals and of the 
current entering the TCSC. 
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Fig. 8. Waveforms of voltage and current at bus 7. 
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Fig. 9. Frequency content of the voltage and current entering the nonlinear 
load at bus 7. 
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Fig. 10. Convergence pattern. 

 

V.  CONCLUSIONS 

 
The periodic steady state computation of a network that 

includes time-varying elements has been proposed in the 
modified harmonic domain, aimed to account for 
interharmonics. The backbone of the proposed hybrid method 
is that it is based on a Thévenin equivalent of the linear part of 
the network (solved in the MHD) whilst the time-varying 
elements are resolved in the time domain. 



The Thévenin-based method has shown advantages over a 
Newton-type method in computational time while keeping 
similar number of iterations for both. This can be attributed to 
the fact that the former does not perform inversion of large 
matrices in the iterative process. In addition, Thévenin does 
not require calculation of Jacobians as in traditional Newton 
technique. 

The proposed method is intended for large networks by 
using computational resources such as parallel processing and 
graphic processor units (GPUs). This may overcome the issue 
of dimensionality, though it is left as a future research topic. 
 

APPENDIX 

DISTRIBUTED-PARAMETERS NETWORK DATA 

  
The lengths of the transmission lines forming the network 

in Fig. 3 are listed in Table I. For all of them we have used the 
conductor data: 0.02 m radius and 18 m height. The source 
parameters are: Ro = 1 m and Lo = 50 mH, and the load data 
are listed also in Table I. The firing angle of the TCSC is set 
equal to 152º, with LTCSC = 0.4 H and CTCSC = 8.8 F. For the 
nonlinear load connected at bus 7, and referring to (19), α is 
equal to 0.4 and β is equal to 105. 

 
 

TABLE I 
PARAMETERS OF NETWORK 

Transmission Lines 
Label Length (Km) Label Length (Km) 
TL1 80  TL6 120 
TL2 80 TL7 80 
TL3 100 TL8 80 
TL4 120 TL9 100 
TL5 80 TL10 150 

Loads 
Label R (Ω) L (mH) Label R (Ω) L (mH) 

L1 300 10 L4 400 0.6 
L2 250 10 L5 300 20 
L3 300 10 L6 250 20 
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