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Abstract--This paper presents an advanced transient 

simulation method, the quadratic integration method, and its 

application to the simulation of HVDC systems. The quadratic 

integration method demonstrates several superior features that 

ensure higher fidelity and stability in transient analysis of 

systems with nonlinearities and switching subsystems: nonlinear 

model equations are converted into a set of linear and quadratic 

equation with the introduction of new variables (model 

quadratization) and the resulting equations are integrated 

assuming a quadratic variation over the integration time step 

(quadratic integration). The method eliminates fictitious 

oscillations exhibited by trapezoidal integration. Furthermore, 

the quadratic integration method is more accurate and robust 

than trapezoidal integration and other transient analysis tools.  

In this paper, the superior properties of the quadratic 

integration in power system transient analysis are demonstrated 

by comparing the quadratic integration with the trapezoidal 

integration in the simulation of High Voltage Direct Current 

(HVDC) system with switching subsystems and nonlinear 

components.           
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I.  INTRODUCTION 

INCE the demands for utilizing long distant sources, and 

linking different frequency systems have been increasing, 

HVDC transmission systems, are becoming one of the most 

promising technologies to meet the need for reliable and cost 

effective transmission. Specially, the rapid increase of wind 

power in remote locations has accelerated the necessity of 

more advanced, reliable and cost effective applications of 

HVDC transmission systems. High fidelity transient 

simulation technique can be a useful tool for the advanced 

design and optimization of HVDC transmission systems with 

nonlinearities and switching subsystems.   

Numerical integration methods have been extensively 

studied and applied to transient analysis of power systems 

with nonlinear and switching components. The most 

predominant method among the time domain transient 

simulation methods is trapezoidal integration due to its 

property of absolute stability (A-stable) [1],[2]. However, the 

trapezoidal integration is problematic when applied to network 

systems with nonlinearities and switching subsystems. 

Fictitious oscillations can be generated, when the state of the 
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network model suddenly changes. The fictitious oscillations 

can be also shown at certain combinations of integration time 

step and system natural frequencies. Therefore, the system 

model with nonlinearities and switching subsystems cannot be 

analyzed properly by pure application of the trapezoidal 

integration. Additional algorithmic controls are needed for the 

trapezoidal integration, when it is used in systems with 

nonlinearities and power electronics (switching systems). 

Specifically, in order to suppress the numerical oscillations of 

the trapezoidal method, several approaches have been 

proposed, such as numerical stabilizer method [3], (b) critical 

damping adjustment (CDA)[4],[5], and (c) wave digital filter 

(WDF)[2],[6]. Numerical stabilizers slightly change both the 

structure and the state equations of the network model, and 

cannot flawlessly eliminate fictitious oscillation. The CDA 

method requires variable time step. Variable time step requires 

that the companion matrices of all devices must be 

recomputed for critical conditions, and the sampling rate 

during critical conditions is higher of that during standard 

conditions. The WDF method can generate some distortions. 

The distortions may be problematic in some cases, leading to 

less accurate results.    

The quadratic integration method has been introduced to 

eliminate fictitious oscillations exhibited by the application of 

the trapezoidal integration, and enhance simulation accuracy. 

Since the method has a natural characteristic to eliminate 

fictitious oscillation, additional algorithmic controls to 

suppress numerical oscillation is not needed. The quadratic 

integration method is highly robust and stable. 

In this paper, the properties of the quadratic integration are 

compared to the trapezoidal integration, and the method is 

demonstrated on a typical 12-pulse HVDC system, using 

nonlinear transformer models and 12-pulse converters.              

II.  DESCRIPTION OF QUADRATIC INTEGRATION  

The quadratic integration is based on two concepts: (a) 

nonlinear equations of systems are reformulated into either 

linear or quadratic equations by the introduction of additional 

state variables, and (b)  the resulting equations are integrated 

assuming that the equations vary quadratically over the time 

period of one time step. The quadratic integration method 

performs better in terms of both stability and accuracy. These 

properties ensure that HVDC systems with nonlinear 

components and switching subsystems can be modeled, and 

simulated with greater accuracy.  

The quadratic integration method is a special case of a class 

of methods known as collocation methods [1].   As shown in 

Fig. 1, the method has three collocation points at )( htx  ,

)2/( htx  , and )(tx in the integration time interval [t-h,t]. 
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Fig. 1. Graphical illustration of quadratic integration 

 

Assuming that the function x(t), as shown in Fig.1, varies 

quadratically in the interval [t-h, t], i.e. 2)(  cbax  , 

the three parameters a, b, and c can be expressed as a function 

of the three collocation points. The result is: 
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 )(2)(
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c m  ,  

where xm is the value x at the mid-point, i.e. at time t-h/2. 

Then, the integration of the quadratic function is 

straightforward.  

The procedure will be illustrated with a simple differential 

equation: )(
)(

tAx
dt

tdx
                  (1)  

Equation (1) is integrated from t-h to t and from t-h to t-h/2, 

yielding:  
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Upon evaluation of the integrals and rearranging the following 

matrix equation is obtained (algebraic companion form) that 

can be applied repetitively to provide the solution to the 

differential equation:  

)(

6

24

5

)(

3

2

6

324 htx

A
h

I

A
h

I

x

tx

A
h

A
h

I

A
h

IA
h

m







































































          (3)  

As another example, consider the following form of a power 

device model (as a set of differential equations): 
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where  T

mm tititititi )()(...)()()( 121  , 
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A and B are nn matrices, kpn  , and )(ty  is internal 

state variables. 

 The algebraic companion form in the time interval is 

represented as (5). 
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where tm is the mid-point of the integration time step[t-h, t]. 

 Standard nodal analysis methods are used to obtain the 

network equations from the component algebraic companion 

forms in the same way as in the trapezoidal integration 

method. Except in this case, nodal equations are written for 

both time t and t-h/2 resulting in twice as many network 

equations as in the trapezoidal integration. 

DESCRIPTION OF 6-PULSE CONVERTER AND NONLINEAR 

TRANSFORMER 
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Fig. 2. A six-pulse converter model. 

 

This section presents a generalized methodology for 

modeling the HVDC system, based on modules of 6-pulse 

converters, three phase saturable core transformers, 

transmission lines and three phase sources. These devices are 

modeled with a set of nonlinear and differential equations 

derived directly from the physical parameters. Application of 

quadratic integration leads to an algebraic companion form in 



terms of voltages and currents at two future points in time. 

A.  6-pulse Converter Model 

The 6-pulse converter consists of six single valves (with 

snubber circuits and current limiting reactors) and a smoothing 

capacitor as shown in Fig.2. The single valve and smoothing 

capacitor of Fig.3 is modeled and merged to formulate the 

topology of the six-pulse converter using standard nodal 

analysis method.     
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Fig. 3. A single valve model and smoothing capacitor model. 

 
The development of the algebraic companion forms for the 

two models of Fig. 3 are derived with the procedure described 

in the previous section. The resulting models are: 

The algebraic companion form of the single valve is: 
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The algebraic companion form of the smoothing capacitor is: 
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TABLE I 

VALVE POINTERS 
valve 

# 
States 

External

)(t  

Internal(t) 

)(t  

External 

)( mt  

Internal 

)( mt  

1 0 3 8 9 10 26 29 34 35 36 

2 4 2 11 12 13 30 28 37 38 39 

3 1 3 14 15 16 27 29 40 41 42 

4 4 0 17 18 19 30 26 43 44 45 

5 2 3 20 21 22 28 29 46 47 48 

6 4 1 23 24 25 30 27 49 50 51 

 
TABLE II 

SMOOTHING CAPACITOR POINTERS 
Cap # States 

1 3 4 29 30 

 

The six-pulse converter model is formulated by connecting 

six single valves and a smoothing capacitor to specific nodes 

of a six-pulse converter. The specific nodes are defined on the 

six-pulse converter of Fig. 2. The state variables consist of 

internal states and external states, and are defined in terms of 

corresponding nodes. The algebraic companion form of the 

entire six-pulse converter is obtained by application of 

standard nodal analysis, i.e. the sum of currents at each node 

equals zero. Substitution using the algebraic companion form 

and casting the equations in a matrix form provides the 6-

pulse converter model. This process is achieved with the 

algorithm below, and the connectivity pointers of Tables I and 

II.  

 

DO WHILE ( iValve < Number of valve) 

      DO WHILE ( i < Number of ROW) 

 1i = Valve Pointer [ i ][ ivalve ] 

 DO WHILE ( j < Number of Column) 

          1j = Valve Pointer [ j ][ ivalve] 

    
]][[]1][1[ jiAjiA vconv   

    
]][[]1][1[ jiBjiB vconv 

 

                  
]][[]1][1[ jiCjiC vconv 

 

                  
]][[]1][1[ jiDjiD vconv   

 END DO 
      END DO 

END DO 
Where andmatrixeachofrowofnumberi ,...,,2,1  

           matrixeachofcolumnofnumberj ...,,2,1
  

The algebraic companion form of the six-pulse converter has 

the following form. 
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convC and 
convD are a 52 by 52 matrices, and

convE , and 
convF  are  

52 by 26 matrices. 

B.  Three Phase Saturable Core Transformer  

This section presents a method to quadratize nonlinear 

equations. An example of a single phase saturable transformer 

is used as it is illustrated in Fig.4.   
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Fig. 4 A single phase saturable core transformer  

 

The saturable core transformer is one of nonlinear 

components. The core magnetizing reactance is modeled as a 

nonlinear inductor with a (magnetizing) current that depends 

on the core flux via a highly nonlinear equation (9):  

))(()(
0

0 tsigniti
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m 
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
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The exponent n is typically 9 to 11 for usual magnetic material 

used for transformers. The above equation can be quadratized 

by introducing additional states and corresponding equations. 

The number of additional states and equations depends on the 

nonlinearity (exponent n). For simplicity, we show below the 

application of this procedure in case the exponent is 5. This 

case requires the introduction of two additional states, i.e. z1 

and z2, and two additional equations. The system equations for 

the single phase saturable transformer (including all equations, 

i.e. linear and quadratized equations) are as follows. 
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A compact matrix form consisting of quadratic equations 

and differential equations can be written for each phase of a 

three phase transformer. Quadratic integration will yield the 

algebraic companion form of the single phase transformer. 

Subsequently, the algebraic companion form of a single phase 

saturable transformer can be merged to form a three phase 

saturable transformer in the same process as that of the six 

pulse converter.   

C.  Control Action-Equidistant Control 

The six-pulse converter can be controlled with a number of 

strategies. We have elected to use equidistant control. The 

digital controller for the equidistant control includes an 

estimator of control references, and the actual control in terms 

of equidistant valve firing pulses [8]-[12].  

The control references consist of two parameters, 

magnitude and zero-crossing time of Line-Line voltage (VAB) 

between phase A and phase B. Since HVDC systems contain 

several components with nonlinear characteristic, VAB can be 

distorted by harmonics. For better accuracy of the control 

scheme reference, first the positive sequence of fundamental 

frequency is estimated by using Fourier analysis and modal 

decomposition and then the reference is computed (Vab1).  

For the equidistant control scheme, the firing delay angle (

 ) is used to control the switching sequence. The scheme of 

equidistant control is shown in Fig.5. 
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Fig. 5. Scheme of equidistant control for switching sequence 
 

 In steady state, the six firing signals for the six thyristors 

are generated, from the zero-crossing time, in equal intervals 

of 60
0
 from each signal pulse. Since the HVDC systems are 

dynamic systems with their specific transient response to 

changes, such as power order changes, feeding power 

variations, and frequency variations, the firing delay angle has 

to be regulated, until the system reaches the steady state as 

shown in Fig.5. For the dynamic control of the six-pulse 

rectifier, the entire process to compute switching sequence is 

presented in Fig.6. 
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 Fig. 6. Control scheme of the six-pulse rectifier 

 

In Block A, a direct voltage reference of converter refdcV ,  is 



computed by dividing reference power refP  into measured 

direct current dcI .With the voltage reference, a deviation of 

firing angle   is calculated in Block B as follows: 

dcccddc IKVV  cos0        (19) 

  sin0cdVV , 
       (20)

 
 




sin0cdV

V




                  dcref VVV  .     (21) 

Where  dcV  is the measured direct voltage, cdV 0 is no-load 

direct voltage at converter side, and cK  is the equivalent 

commutation resistance. It is obvious that the relationship 

between direct voltage and firing angle is inherently nonlinear 

as shown in (19). However, as shown in (21), the linear 

relation between the deviations of both firing angle and direct 

voltage exists, and the digital controller can linearly regulate 

the six-pulse converter. In the next Block   is 

proportionally filtered with   cf K , so that large 

changes (jumps) in firing angle are avoided and the digital 

controller can ensure smooth transitions and robust and stable 

operation. A new firing angle next is calculated in Block D by 

summing present firing angle and filtered deviation of firing 

angle, and the new firing angle is bounded (for example 

between o5  and o85 ) to prevent switching misfires in Block 

E. With the new firing angle next and zero crossing time 0t

from DSP, Block F sequentially generates the firing pulses for 

six valves. The mathematical notation is as follow: 

Valve k :  )6( 0
0 f

kttt delayk   (22) 

Where the time delay is calculated as 0)360/( Ttdelay   , 
0T  

is fundamental period, 0f  is fundamental frequency, and k 

assumes integer values from 1 to 6. 

The main idea of the digital controller for an inverter is very 

similar to the rectifier controller, and only the differences in 

firing delay angle has to be computed from the extinction 

angle (  ) as follows. 

diiiddi IKVV  cos0        (23) 

  sin0idVV
       (24)

 




sin0idV

V




            (25)             

dcref VVV         (26) 

 next                 (27) 

   nextnext

0180
         (28)      

Where diV is the measured direct voltage at the inverter side, 

idV 0
is no-load direct voltage at inverter, iK  is equivalent 

commutation resistance, and  is commutation angle. 

III.  COMPARISON OF TRAPEZOIDAL AND QUADRATIC 

INTEGRATION 

A.  Accuracy Comparison 

Accuracy is an important characteristic of numerical 

integration methods, since the reliability of power transient 

analysis depends on it. In this paper, the accuracy of the 

quadratic integration is compared with that of the trapezoidal 

integration. The shaded parts of Fig.7 show symbolically and 

exaggerated the integration error of both methods, and the 

accuracy of solutions by the applications of both methods is 

depended on these integration errors. 

 
Fig. 7. Integration error of both methods. 

( (A) quadratic integration, and (B) trapezoidal integration ) 

 
The truncation error is represented as follows (since the 

trapezoidal integration is order two accurate and the quadratic 

integration is order four accurate [1]): 

)( 2hOE ltrapezoida  and )( 4hOEquadratic   over the interval [t-h, 

t], where E denotes the truncation error, and h is the time step.  

That is, the dominant error per step of trapezoidal integration 

is proportional to h
2
 and that of the quadratic integration is 

proportional to h
4
.  

In order to demonstrate the increased accuracy of the 

quadratic integration method, a simple switching system is 

used as shown in Fig.8. The results by application of the 

trapezoidal and the quadratic integration methods are 

compared with the direct (analytical) solution. Specifically, 

the direct solution (exact solution) is calculated analytically 

(using Laplace transform).  

L=0.1H

Fig. 8. A simple switching system 

 

The switches shown are ideal electronic, and the sequence 

of switching given with: Switches S1 are closed at t=0.0T+kT, 

and opened at t=0.5T+kT, and switches S2 are reversely 

operated, where the switching period T is 0.02 seconds, and k 

is integer, 0, 1, 2, ... The model equations are: 
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Fig.9 shows the results (inductor current and the capacitor 

voltage) from the direct analytical solution. The results by 

application of the trapezoidal and quadratic integration 

methods they appear to be similar in form as the waveforms of 

Fig.9. In order to show the error clearly, Fig 10 shows the 

absolute errors of both numerical methods during last 0.1 

second and for two different integration time steps. 

 
Fig. 9. Analytical simulation results   
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Fig. 10. Absolute error of the inductor current by both numerical methods in 

steady state    
 

The absolute error is defined as: 

)()( titierror numericalactual           (29) 

where iactual is actual inductor current calculated by the 

Laplace transform, and inumerical is inductor current by 

applications of the trapezoidal and quadratic integration. Note 

that the absolute errors of the quadratic integration are about 

six orders of magnitude smaller than the errors of the 

trapezoidal integration. The example shows clearly the 

substantially higher accuracy of the quadratic integration 

method as compared to the trapezoidal integration. The 

computational cost of the quadratic integration is almost twice 

as much as that of the trapezoidal integration with the same 

time step. However, the quadratic integration with time step of 

50 micro-seconds as compared to the trapezoidal integration 

with time step 10 microseconds offers more accurate 

simulation results (more than three orders of magnitude) at a 

fraction of the execution time (about 50% of the execution 

time of trapezoidal integration).     

B.   Numerical Oscillation Comparison 

Power transient analysis by application of Trapezoidal 

integration has been suffered from numerical oscillations 

especially in systems with nonlinearities and switching 

subsystems. The root cause of the fictitious oscillations is well 

known. The accuracy of the trapezoidal and quadratic 

integration methods has been studied and reported in previous 

publications [1], [3]. The possibility of fictitious oscillatory 

solution can be studied from the general form of the numerical 

solution of simple dynamical systems. Consider for a example 

a first order dynamical system: 

ax
dt

dx
 , where 0a .        (30) 

The physical system is stable, since 0a . Therefore the direct 

analytical solution is also stable. The numerical solution using 

trapezoidal integration is: 

)(
2

2
)( htx

z

z
tx 












 , where ahz  , and h is positive.   (31) 

If the integration time step is so selected as to 2z , the 

numerical solution for )(tx will oscillate around the true 

values. Because the method is absolutely stable, the true 

values can be approximated by filtering the oscillations. The 

numerical solution using the quadratic integration, after 

eliminating the mid-point, xm , is: 

)(
612

612
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2

htx
zz

zz
tx 














        (32) 

where ahz  , and h is positive. 

Note that in the numerical solution (32) the coefficient cannot 

become negative for any selection of the integration time step 

(a is negative and h is positive). Therefore, the quadratic 

integration is free of fictitious oscillations as compared to the 

trapezoidal integration.   

To demonstrate numerical oscillations graphically, the six 

pulse converter model of Fig.2 is simulated with three 

methods and with an appropriately selected integration time 

step (same for all methods): (a) purely trapezoidal integration, 

(b) trapezoidal integration with the numerical stabilizer 

method, and (c) purely quadratic integration. The results are 

shown in Fig.11.  
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Fig. 11. Line-Line voltage between Phase A and phase B of the six-pulse 

converter. ((A) Purely trapezoidal, (B) Filtered waveform of (A), (C) 

Trapezoidal with numerical stabilizer, and (D) Quadratic integration) 

 

Trace (A) is the Line-Line voltage (A-B) solution using the 

trapezoidal integration and trace B is the filtered version of 

this solution.  The results clearly demonstrate the existence of 

fictitious oscillations around the true solution of the system. 

Trace (C) shows the solution when numerical stabilizers are 



used in the trapezoidal integration. Trace (D) shows the 

solution by application of the quadratic integration which is 

free of fictitious oscillations.   

IV.  SIMULATION OF HVDC SYSTEM - EXAMPLE RESULTS 

The quadratic integration method is demonstrated on a typical 

12-pulse HVDC system. The demonstration example is shown 

in Fig.12. Each component of the system of Fig 12 is modeled 

with a set of nonlinear and differential equations derived 

directly from the physical parameters of the components.  
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Fig. 12. A HVDC system for testing the properties of quadratic integration 

 
TABLE III 

SETTING VALUES OF PARAMETERS FOR THE 12-PULSE HVDC SYSTEM 

Equivalent  

Source 
Line-to-Line voltage (RMS) 225 kV 

Inductance ( L ) 10 mH 

Resistance ( R ) 5   

the parameters 

of converters 
Snubber ( SC ) 0.1 uF 

Snubber ( SR ) 1200   

Limiting ( L ) 10  mH 

Limiting ( R ) 3000   

Thyristor ( PC ) 20  nF 

Thyrister( 61 ~ VV GG  of ON) 100 Mhos 

Thyrister( 61 ~ VV GG of OFF) 0.1 uMhos 

Smoothing( C ) 50 F  

DC-Line Inductance ( L ) 0.1  H 

 

The 12-pulse HVDC system consists of AC transmission 

lines, two 6-pulse rectifiers, two 6-pulse inverters, a DC 

transmission line, and four three phase saturable-core 

transformers. A total of four three-phase equivalent sources 

represent the rest of the system. The parameters of the major 

components of the system are shown in Table III. At steady 

state, the DC transmission line transmits total real power of 

200 MW.    
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Fig. 12. (A) Input line-to-line voltages and (B) input currents before 6-pulse 

rectifier, (C) output line-to-line voltages and (D) output currents after 6-pulse 

inverter, and (E) DC voltage and (F) DC current.  

Fig.12 shows the three phase voltages (A) and the three 

phase currents (B) at the input of the rectifier, the three phase 

voltages (C) and the three phase currents (D) at the output of 

the inverter, and the voltage (E) and current (F) of the DC 

Line.  Fig.13 shows the same quantities zoomed into the time 

interval from 2.930 to 3.000 (seconds). Note that the voltages 

and currents exhibit the usual distortion incurred by the 

operation of the rectifier and inverter.  
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Fig. 13. (A) Input line-to-line voltages and (B) input currents before 6-pulse 

rectifier, (C) output line-to-line voltages and (D) output voltages after 6-pulse 

inverter, and (E) DC voltage and (F) DC current from 2.930 to 3.000 second. 
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Fig. 14. (A) Three phase voltages and (B) currents at source 1, (C) three phase 

voltages and (D) currents at source 4.  
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Fig. 15. (A) Three phase voltages and (B) currents at source 1, (C) three phase 

voltages and (D) currents at source 4 from 2.930 to 3.000 seconds. 
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Fig. 16. (A) three phase currents at source 1, (B) three phase currents at source 

4 from 0.0 to 502.5 milliseconds. 



The graphs in Fig.14, 15 and 16 show (A) three phase 

voltages and (B) currents at source 1, (C) three phase voltages 

and (D) current at source 4. Close examination of the 

waveforms show the presence of inrush currents during the 

transient period which decay and become negligible at steady 

state. The shape of the current waveforms in Fig.15 are closer 

to sinusoidal as compared to the currents at the input of the 

rectifier or the output of the inverter as expected. 
Another example is shown in Fig.17 and 18. In the example 

we simulate a HVDC transmission system in steady state and 

a step change order in power. Specifically, while the system 

was operating at 200 MW of transmission through the HVDC 

transmission line, a power change order of 100 MW (for a 

total of 300 MW) is provided at time 3.5 seconds. The 

response of the system is shown in the above mentioned 

figures. Note that DC current and voltage transit very fast to 

the new operating point. The firing angles (extinction angles, 

etc.) of the four 6-pulse converters are automatically regulated 

to meet the power order. In this simulation, we demonstrate 

that the system can respond very fast to the power order 

change. In real systems the power order will be in the form of 

a power ramp that will result in smoother transitions of the 

operating point.   
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Fig. 17. (A) Input voltages and (B) input voltages before 6-pulse rectifier, (C) 

output voltages and (D) output voltages after 6-pulse inverter, and (E) DC 

voltage and (F) DC current.  
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Fig. 18. (A) Input voltages and (B) input voltages before 6-pulse rectifier, (C) 

output voltages and (D) output voltages after 6-pulse inverter, and (E) DC 

voltage and (F) DC current from 2.930 to 3.000 second.  

V.  CONCLUSIONS 

This paper presented an advanced time domain method and 

its application on a HVDC transmission system. The proposed 

quadratic integration method is order four accurate. 

Simulation results are more accurate than those by application 

of the trapezoidal integration method.  The quadratic 

integration method eliminates fictitious oscillations, accurately 

models nonlinear subsystems such as saturable-core 

transformers and accurately models the operation of switching 

subsystems. The proposed method is well suited for high 

fidelity simulation of complex HVDC systems.     
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