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Abstract—Intuitively understanding the behavior of a power 

system is difficult because electricity is invisible. K. Noda 

proposed a mechanical simulator of a power system model to help 

understand power system behavior by representing it visually. 

The validity of the mechanical simulator was confirmed 

qualitatively. This study quantitatively evaluates the mechanical 

simulator through experiments that assess the accuracy of its 

analogy with the power system model. To this end, the steady-

state and transient stability limit in the mechanical simulator are 

demonstrated. The limitation on the accuracy of the mechanical 

simulator is evaluated. 
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I.  INTRODUCTION 

power system is a nonlinear dynamical system. Its main 

objective is to deliver electric energy to consumers. 

Stability of a power system significantly influences the 

reliability of its operation. Even smart grids cannot avoid 

stability problems, because their configuration is similar to that 

of conventional power systems [1]. For the successful 

operation of a power system, it is necessary to understand the 

phenomena arise in a power system involved with power 

system stability. 

Traditionally, power system stability has been associated 

with generator rotor angle dynamics, which are described by a 

second-order differential equation (swing equation). 

Interconnected synchronous machines in a power system are 

required to operate in synchronism when subjected to 

disturbance and the ability to achieve this is called power 

system stability [2]. Physically, this requires balance between 

the mechanical power applied to each generator and its 

electrical power output. Any imbalance of power would 

accelerate or decelerate the machine rotor. If the difference in 

the rotor angle between any two machines increases 

indefinitely, that is, a generator loses synchronism with the rest 

of the system, the power system is unstable. Power system 

stability is analytically studied on the basis of the swing 

equation of the generator. However, intuitively understanding 

the power system behavior obtained by the stability study is 

difficult because electricity is invisible. 

                     
This work was supported in part by a grant from the Power Academy. 

Yuko Omagari and Tsuyoshi Funaki are with the Division of Electrical, 

Electronic and Information Engineering, Osaka University, Suita, Osaka 565-

0871 Japan (e-mail of corresponding authors:yuko@ps.eei.eng.osaka-u.ac.jp, 

funaki@eei.eng.osaka-u.ac.jp). 

 

Paper submitted to the International Conference on Power Systems 

Transients (IPST2011) in Delft, the Netherlands June 14-17, 2011 

 

A mechanical simulator of a power system model may help 

intuitively understand power system behavior by representing 

it visually. For understanding power system stability, K. Noda 

proposed a mechanical simulator of a two-machine power 

system model, which consists of a rotating mass and spring 

[3]. It is easy to understand power system behavior, which 

refers to the acceleration/deceleration of a rotor angle, by 

representing a synchronous machine using a rotating mass. The 

validity of the mechanical simulator was qualitatively 

confirmed on the basis of the mathematical expressions of the 

mechanical simulator and the power system model [3]. 

Furthermore, the electric components in the power system 

model are represented by the mechanical components in the 

mechanical simulator. The quantitative evaluation of the 

mechanical simulator is required to assess the accuracy of the 

analogy of its behavior with that of the power system model 

[4]. This study quantitatively validates the mechanical 

simulator with the power system model through experiments 

and investigates the limitation on the accuracy of the 

mechanical simulator to represent power system behavior. To 

this end, the steady-state and transient stability limit of a power 

system in the mechanical simulator is demonstrated.  

The rest of the paper is organized as follows. Section II 

describes a two-machine power system model and power 

system stability is studied on the basis of this model. Section 

III reviews the mechanical simulator of a two-machine power 

system model and discusses the analogy between the 

mechanical simulator and the power system model. The 

behavior of a power system in the mechanical simulator is also 

presented. Section IV provides the quantitative evaluation of 

the mechanical simulator through mechanical experiments. 

Finally, Section V presents the conclusions. 

II.  ELECTRIC POWER SYSTEM 

A.  Two-machine Power System Model 

The simplest power system consists of a generator, a 

transmission line, and a load. Figure 1 shows a single-phase 

equivalent circuit of a two-machine power system. A 

synchronous generator and a synchronous motor are 

interconnected through a transmission line having a reactance 

X. VG∠δ and VM∠0 are the phasor expressions of the internal 

voltages of the machines. This simplest system is useful in 

describing the basics of power system behavior. Power system 

stability is studied for the two-machine power system in Fig. 1. 

B.  Power System Stability 

Interconnected synchronous machines in a power system 

are required to operate in synchronism when subjected to 
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Fig. 1.  Two-machine power system. 

 

 

disturbance, and the ability to achieve this is called power 

system stability. This stability is typically classified into 

steady-state and transient, depending on the severity of 

disturbance [2]. 

1) Swing Equation 

The dynamics of a synchronous generator are governed by 

the following second-order differential equation.  
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Where, M is the inertia constant, δ is the rotor angular 

displacement with respect to the synchronously rotating 

reference, and D is the damping coefficient. Pm and Pe are 

the mechanical power input and the electrical power output 

of a generator, respectively. The imbalance between Pm and 

Pe accelerates or decelerates the rotor.  

For the two-machine power system, the real and reactive 

powers at the generator are given as functions of phase angle δ. 
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PG in (2) corresponds to Pe in (1). The power at the motor is 

equivalent to the transmitted power PG from the generator. The 

power–angle characteristic in (2) gives nonlinearity in the 

power system operation. 

2) Steady-state Stability 

Steady-state stability is the ability of a power system to 

maintain synchronism when subjected to small disturbance 

such as gradual change in load. The steady-state stability can 

be studied by linearizing (1) about an operating point [5]–[8]. 

For simplicity, the two-machine power system of Fig. 1 is 

integrated into one equivalent machine and infinite bus system 

[9]. Linearizing (1) for constant Pm and negligible damping 

effect, we get 
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where Δ denotes a small deviation.  

The characteristic equation of (3) has two roots: 
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The system is stable in the range of δ ≤ 90°: both roots are on 

the imaginary axis, where δ oscillation does not diverge. The 

system is unstable in the range of δ > 90°: both roots are real, 

positive and negative, and δ results in divergence. At δ = 90°, 

the system is at the stability limit. Thus, the steady-state 

stability power limit is given by 
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(a) Power–angle relationship. 
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(b) Energy-angle relationship. 

Fig. 2.  Power-angle and energy-angle relationship of a single-machine 

infinite bus system. 

 

 

3) Transient Stability 

Transient stability is the ability of a power system to 

maintain synchronism when subjected to large disturbance, 

such as a short-circuit fault on a transmission line and loss of a 

large load. There are two commonly used methods for a 

transient stability study: time-domain simulation and energy 

function method. In the time-domain simulation method, (1) is 

solved numerically to discriminate whether the rotor angle 

increases indefinitely or oscillates about an equilibrium point. 

The energy function method is a special case of the 

Lyapunov's second method and is applied to the transient 

stability study as follows [10]–[15]. 

Recognizing that Pe = Pmax sin δ, the energy function V (δ, 

ω) of the system for (1) is defined as 
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where ω = dδ/dt. Note that the damping component in (1) is 

neglected. The first term is kinetic energy and the second is 

potential energy, and δ
s
 is the post-disturbance stable 

equilibrium point. The critical energy Vcr at the stability 

boundary is equal to the system potential energy at the post-

disturbance unstable equilibrium point δ
u
. 

The transient behavior of a single-machine infinite bus 

system is studied for local load shedding by using the energy 

function. Figure 2(a) shows the power–angle relationship of 

the system and the ordinate gives the transmitted power. 

Figure 2(b) shows the energy–angle relationship of the system. 

The electrical load PL locally connected to the power station is 

included in the mechanical power input Pm : Pm = Pm’ − PL, 

where Pm’ is the net mechanical power input from a prime 

mover. When the large local load ΔP, which is a part of PL, is 



shed, there is surplus of mechanical power input over electrical 

power output [Fig. 2(a)]. Equilibrium points of the post-

disturbance system are given for d
2
δ/dt

2
 = 0 and dδ/dt = 0, and 

the condition that two equilibrium points exist is considered as 

shown in Fig. 2(a). The post-disturbance stable δ
s
 and unstable 

δ
u
 equilibrium points are given by 
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The initial conditions at the onset of the disturbance are ω = 

0 and δ = δ0, where δ0 is the operating point before the onset 

of disturbance. Then, the energy Vs of the system is 
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On the other hand, the critical energy Vcr at the stability 

boundary of the system is 
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If Vs is less than Vcr, then the system is stable; if it is greater, 

then the system is unstable, that is, δ diverges and the 

generator falls out of step. At Vs = Vcr, the system is at the 

stability limit. Thus, the criterion for the stability is given by 
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Substituting Pm = Pmax sin δ
s
 and solving (10), we get 
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Because δ
s
 cannot be expressed in the closed form, it must be 

calculated numerically using an iterative convergence 

calculation. The maximum local load shedding ΔPmax is given 

by 
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III.  MECHANICAL SIMULATOR OF POWER SYSTEM MODEL 

This section reviews the mechanical simulator of the two-

machine power system model. The qualitative validation of the 

mechanical simulator is derived on the basis of the 

correspondence in the mathematical expressions of the 

mechanical simulator and the power system model. Then, the 

behavior of the power system in the mechanical simulator is 

illustrated.  

A.  Mechanical Simulator of Two-machine Power 

System Model 

Figure 3(a) shows the schematic diagram of the mechanical 

simulator of the two-machine power system model developed 

by K. Noda [3]. Rotating disks G and M represent the 

generator and motor, respectively. They pivot independently 

on a common axis and are interconnected by three springs. The 

three springs are equiangularly placed on the fringe of the 

disks to represent a balanced three-phase system. The rotating 

handle and weights represent mechanical power input and 

output of the generator and motor, respectively. The image of 

the mechanical simulator constructed in this study is shown in 

Fig. 3(b). 

)(rF

)(F

)(F



L

)(l

Weights

Spring

Disk M 

Disk G 

Rotating 
Handle

WinchMR
GR





 
(a) Schematic diagram of mechanical simulator. 

 

 
(b) Image of mechanical simulator. 

Fig. 3.  Mechanical simulator of two-machine power system model. 

 

 

B.  Analogy of Mechanical Simulator with Power 

System Model 

The dynamics of the disk are governed by the following 

second-order differential equation. 
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Where, J is the moment of inertia of the disk and Tm and Te are 

the torques acting on the disk originating from the rotating 

handle or weights and from the spring tension, respectively. μ 

is the dynamic friction torque and δ is the displacement angle 

between the two disks. Note that the damping component μ is 

assumed to be constant for the slow rotation of the disk. By 

comparing (13) with (1), correspondence between parameters 

and variables are found. While (13) is given in a stationary 

reference frame, (1) is given in a rotating reference frame. The 

mechanical simulator at the stationary state corresponds to the 

power system model at a synchronous speed where the 

imbalance between Pm and Pe is zero. 

Furthermore, the mechanical simulator shows 

correspondence with the power system model in the algebraic 

equations. The spring length is expressed as a function of δ. 
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Where, RG and RM are radii of disks G and M, respectively,  

and L is the distance between the two disks. 

The spring tension F(δ) of a linear spring is given by 
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where k is a spring constant and l0 is the natural length of the 



spring. When F(δ) is proportional to the spring length, it is 

given by 
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where D ≡ l(0°)/F(0°). 

F(δ) acting on disk G can be decomposed into tangential 

Fr(δ) and centripetal Fθ(δ) components. 
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Where, α is the angle between F(δ) and Fr(δ) and β is the angle 

between F(δ) and Fθ(δ). cosα and cosβ are given by 
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Substituting (16) and (18) into (17), we get 
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The product of the tangential force Fr(δ) and the radius RG 

gives the torque Tr(δ) acting on disk G. Similarly, the product 

of the centripetal force Fθ(δ) and RG gives the imaginary 

torque Tθ(δ). 
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Comparing (20) with (2), the following correspondence 

exists between the parameters and variables in the mechanical 

simulator and the power system model: 

 Radii RG and RM correspond to voltages VG and VM, 

respectively. The distance from the common axis to 

the spring corresponds to the voltage at the 

corresponding point on a transmission line. 

 The product of the tangential component of spring 

tension Fr(δ) and radius RG gives torque Tr(δ), which 

corresponds to real power PG. 

 The product of the centripetal component of spring 

tension Fθ(δ) and radius RG gives imaginary torque 

Tθ(δ), which corresponds to reactive power QG. 

 The reciprocal of spring tension D [≡ l(0°)/F(0°)] 

corresponds to transmission line reactance X. 

Thus, the analogy between the mechanical simulator and the 

power system model is clear based on the correspondence of 

their differential and algebraic equations. 

The mechanical–mathematical model analogy proposed by 

K. Noda was described in (14)–(20) [16]. This strict analogy is 

established under the condition that the spring tension is 

proportional to the spring length with l0 = 0. In this case, Tr(δ) 

and Tθ(δ) are given by (20) where D = l(0°)/F(0°). 

However, the spring tension is generally not proportional to 

the spring length with l0 > 0. In this case, Fr(δ) in (19) is 

rewritten as 
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Then, Tr(δ) in (20) is rewritten as 

 
(a) Steady-state stability limit of a power system in mechanical 

simulator. 

 
(b) Out of step synchronous generator in mechanical simulator. 

Fig. 4.  Behavior of a two-machine power system model in mechanical 

simulator. 
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Tθ(δ) is obtained similarly. Comparing (22) with (2), it is 

found that l(δ)/F(δ), which varies with δ, corresponds to  

transmission line reactance X. Thus, when the spring tension is 

non-proportional to the spring length, the analogy between the 

mechanical simulator and the power system model is not strict, 

but approximate. 

C.  Behavior of a Power System in the Mechanical 

Simulator 

Because the mechanical simulator is analogous to the power 

system model in the expressions of the differential and 

algebraic equations, it simulates the power system behavior 

obtained in Section II.B.  

The behavior of a power system subjected to small 

disturbance is simulated in the mechanical simulator as follows. 

As weight is added in small increments, torque Tr increases 

and disk M rotates with δ gradually increasing from 0°. 

Interpreted in terms of a power system, this change occurs 

according to increase in the load, and then the amount of 

transmitted power and the phase angle between the internal 

voltages of the generator and motor increase. Tr reaches its 

maximum value at δ = 90° [Fig. 4(a)]. As more weight is 

added, δ increases but Tr decreases, and the torque due to the 

weight acting on disk M will not balance Tr. Then, disk M is 

accelerated and δ increases indefinitely, resulting in three 

springs intersecting at the midpoint [Fig. 4(b)]. Thus, the 

corresponding power system is considered unstable. This 



behavior of the power system in the mechanical simulator 

shows that the steady-state stability limit occurs at δ = 90° and 

the generator falls out of step at δ > 90°. The maximum torque 

obtained in this manner corresponds to the steady-state 

stability power limit of a power system. 

The mechanical simulator is also used to simulate the 

transient behavior of a single-machine infinite bus system 

following local load shedding. When the mechanical simulator 

is used for this purpose, disk G is stuck so as to not rotate and 

represent an infinite bus. Disk M and the weights represent a 

generator and its mechanical power input, respectively. An 

abrupt change in Pm of a generator is simulated by suddenly 

adding a large weight ΔW. Disk M begins to accelerate 

because of ΔW. If ΔW is small, disk M rotates and stops at a 

new equilibrium point, and the corresponding power system is 

considered stable. On the other hand, if ΔW is very large, disk 

M is accelerated and δ increases indefinitely, resulting in the 

three springs intersecting at the midpoint. Then, the 

corresponding power system is considered unstable. The 

maximum increase in torque obtained in this manner 

corresponds to the maximum local load shedding of a power 

system. 

IV.  RESULTS AND DISCUSSION 

This section quantitatively evaluates the mechanical 

simulator with the power system model by a comparative study 

on the steady-state stability power limit and the maximum 

local load shedding. 

The strict analogy between the mechanical simulator and 

the power system model is established when the 

proportionality of the spring tension to the spring length is 

satisfied. However, the mechanical simulator has an intrinsic 

problem, that is, the non-proportional relationship between the 

spring tension and the spring length. Therefore, the behavior 

of the mechanical simulator is explained by compensating the 

non-proportionality of the spring tension to the spring length. 

In particular, it is evaluated by varying the transmission line 

reactance with δ in the power system model. The inherent 

limitation on the accuracy of the mechanical simulator due to 

the springs is evaluated. 
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Fig. 5.  Variation in transmission line reactance with δ. 

 

 

A.  Experiment Results 

1) Mechanical Experiment Results 

The physical parameters of the mechanical simulator are 

radius RG = RM = 7.30 × 10
−2

 [m] and distance L = 4.90 × 10
−1

 

[m]. The relationship between spring tension F [N] and spring 

length l(δ) [m] is measured as F = 4.55 × l(δ) − 0.671. The 

springs are chosen so that they will not be stretched beyond 

their elastic limit when weights are added. The dynamic 

friction torque μ is evaluated to be 2.99 × 10
−4

 [N∙m] by 

measuring the decay of the rotating speed of the freewheeling 

rotation of the disk. The maximum static friction torque of the 

disk is measured to be 1.29 × 10
−3

 [N∙m] at which the disk 

with the stick condition starts to rotate.  

The steady-state stability power limit and the maximum 

local load shedding in the mechanical simulator are 

experimentally obtained as in Section III.C. The maximum 

local load shedding are conducted for different initial 

conditions δ0 of 20.0°, 40.0°, and 60.0° in the mechanical 

experiment. The results are shown in Table I. The 

corresponding δ
l
 and

 
δ

e
 in the mechanical simulator are 

simultaneously shown in Table I. 

2) Numerical Experiment Results 

The parameters of the power system model are set to be 

equivalent to the physical parameters of the mechanical 

simulator. 

The steady-state stability power limit and the maximum 

local load shedding in the power system model are obtained as  

     TABLE I 

MECHANICAL AND NUMERICAL EXPERIMENTS RESULTS 

          

1.81 (δ
l
=85°) 1.74 (δ

l
=90°) 1.76 (δ

l
=90°)

δ0=20.0° 0.88 (δ
e
=59°) 0.82 (δ

e
=56°) 0.85 (δ

e
=57°)

δ0=40.0° 0.58 (δ
e
=72°) 0.45 (δ

e
=65°) 0.50 (δ

e
=67°)

δ0=60.0° 0.27 (δ
e
=83°) 0.17 (δ

e
=75°) 0.21 (δ

e
=79°)

maximum local load

shedding

mechanical simulator

[pu
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]

power system model

with X ref [pu
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]

power system model

with X (δ ) [pu
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]

steady-state stability power limit

 

             *1 [pu] = 1×10-2 [N∙m], δl is the stability limit and δe is the equilibrium point 

             System base = 100 [MVA], Voltage base = 500 [kV], VG = VM = 1 [pu] 

             *2 X = 0.590 [pu], *3 M = 7.63 [MJ/rad] and D = 2.99 
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(a) Power–angle relationship. 
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(b) Energy–angle relationship. 

Fig. 6.  Power–angle and energy–angle relationship of the power system 

model (For example, δe
 = 65° and X(65°) = 0.569 [pu]). 

 

 

in Section II.B. The maximum local load shedding is evaluated 

with the energy function method for different initial conditions 

δ0 of 20.0°, 40.0°, and 60.0°. The Newton–Raphson method is 

used to solve (11). 

Numerical experiments are also performed on the power 

system model considering the non-proportionality of the spring 

tension to the spring length, that is, by varying transmission 

line reactance with δ. The equivalent transmission line 

reactance X(δ) is shown in Fig. 5. The maximum local load 

shedding is evaluated with the time-domain analysis for 

respective δ0. Equation (1) is solved by the fourth-order 

Runge–Kutta method with a time step of 0.01 sec. The 

summarized results including the corresponding δ
l
 and

 
δ

e
 in the 

power system model are simultaneously shown in Table I. 

B.  Discussion 

1) Steady-state Stability 

The mechanical simulator provides a higher steady-state 

stability power limit than the power system model. The error 

of the mechanical simulator to the power system model is 4.02 

[%]. In this study, an error within five percent is acceptable, 

due to the accuracy of the identified parameters of the 

mechanical simulator. Because the error is smaller than this 

criterion, it is quantitatively validated. 

When the non-proportionality of the spring tension to the 

spring length is compensated, the error reduces to 2.84 [%]. 

This is explained as follows. In the numerical experiment, the 

steady-state stability power limit is calculated for the power 

system model with a transmission line reactance of Xref = 0.571 

[pu]. When the non-proportionality of the spring tension to the 

spring length is compensated, the steady-state stability power 

limit at δ
l
 = 90° corresponds to that with X(90°) = 0.567 [pu] 

which is higher than that with Xref = 0.571 [pu]. When the 

variation in the transmission line reactance with δ is 

considered in the power system model, the error of the 

mechanical simulator reduces. 

The mechanical simulator validly represents the steady-state 

stability power limit in a power system. The influence of the 

non-proportionality of the spring tension to the spring length 

does not limit the accuracy of the mechanical simulator for the 

steady-state stability power limit. 

2) Transient Stability 

The mechanical simulator provides higher maximum local 

load shedding than the power system model. The error of the 

mechanical simulator for the initial condition of δ0 = 20.0°, 

40.0°, and 60.0° are 7.3, 29, and 59 [%], respectively. Because 

the error is larger than the criterion, it is not quantitatively 

validated. 

The error of the mechanical simulator can be attributed to 

the non-proportionality of the spring tension to the spring 

length. Its influence on the maximum local load shedding is 

explained as follows. In the numerical experiment, the 

maximum local load shedding is calculated for the constant 

transmission line reactance Xref. When the non-proportionality 

of the spring tension to the spring length is compensated, the 

equivalent transmission line reactance at the post-disturbance 

equilibrium point δ
e
 = 56°, 65°, and 75° are 0.570, 0.569, and 

0.568 [pu], respectively, which are smaller than Xref. Figure 6 

shows the power–angle and energy–angle relationships of the 

power system model with Xref and X(δ
e
). From Fig. 6(a), the 

maximum power in the power system model with X(δ
e
) is 

higher than that of the power system model with Xref. This 

increases the maximum transmittable power and enhances the 

transient stability of a power system. The critical energy of the 

power system model with Xref for δ0 = 20.0°, 40.0°, and 60.0° 

are 0.234, 0.0898, and 0.0201 [pu], respectively. The 

corresponding critical energy of the power system model with 

X(δ
e
) are 0.243, 0.0932, and 0.0209 [pu], respectively. 

Because the critical energy of the power system model with 

X(δ
e
) is higher than that with Xref, the maximum local load 

shedding in the model with X(δ
e
) is higher. Therefore, 

although the dynamic variation in X(δ) is not considered in the 

above discussion, the mechanical simulator with the non-

proportional spring is expected to provide higher maximum 

local load shedding than the power system model with Xref. It 

should be noted that the error in the mechanical simulator is 

also attributed to the dynamic friction torque, which is not 

considered in the numerical experiment of the energy function 

analysis. This results in higher maximum local load shedding 

in the mechanical simulator than the power system model. 

When the non-proportionality of the spring tension to the 

spring length is compensated, the error in the maximum local 

load shedding for δ0 = 20.0°, 40.0°, and 60.0° reduces to 3.5, 

16, and 29 [%], respectively. However, a large error remains 

for a large δ0. This may be attributed to the static friction 



torque in the mechanical simulator that induces the hysteresis 

stick and slip behavior in the motion. The influence of the 

friction on the behavior of the mechanical simulator is difficult 

to evaluate and the static friction torque is not considered in 

the mechanical simulator equation and in the discussion of the 

analogy. The ratio of the dissipated energy resulting from the 

static friction torque to the elastic energy stored in the spring 

at δ
u
 may be high at a large δ0. Therefore, the error in the 

mechanical simulator due to the static friction torque is high at 

a large δ0. The error in the mechanical simulator for δ0 = 20.0° 

is smaller than the criterion and the mechanical simulator is 

quantitatively validated for a small δ0. 

When the non-proportional relationship between spring 

tension and spring length is compensated, the mechanical 

simulator validly represents the maximum local load shedding 

in a power system at a small δ0. However, the error in the 

mechanical simulator occurs due to the friction torque in the 

simulator. 

V.  CONCLUSIONS 

Because electricity is invisible, it is difficult to intuitively 

understand the power system behavior obtained from a 

stability study. In this study, we described the mechanical 

simulator of a power system model, which provides a means of 

visualizing power system behavior. The qualitative analogy 

between the mechanical simulator and the power system 

model was derived, on the basis of the correspondence in their 

mathematical expressions. The strict analogy is established 

when the proportionality of the spring tension to the spring 

length is satisfied. The mechanical simulator has an intrinsic 

problem, that is, the non-proportional relationship between the 

spring tension and the spring length. 

This study performed a quantitative evaluation of the 

mechanical simulator by comparing the mechanical experiment 

results with the numerical experiment results of the power 

system model. The validity of the mechanical simulator was 

quantitatively confirmed for the steady-state stability power 

limit. The error in the mechanical simulator reduced by 

compensating the non-proportionality between the spring 

tension and the spring length. The non-ideal characteristics of 

the spring did not limit the simulation of the steady-state 

stability power limit. When the non-proportionality of the 

spring tension to the spring length was compensated, the 

mechanical simulator was quantitatively validated with respect 

to the maximum local load shedding for the initial condition of 

a small phase displacement angle. 

The error in the mechanical simulator is due to springs that 

have a non-proportional relationship between their tension and 

length. However, when this non-ideal characteristic of the 

spring is considered, the mechanical simulator validly 

represents power system behavior. The mechanical simulator 

can be used to aid in intuitively understanding power system 

behavior and the concept of power system stability. 

The influence of springs can be eliminated by using springs 

that are proportional in tension and length. These details are 

covered in another paper. The error of the mechanical 

simulator to the power system model is expected to reduce for 

such springs. 
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