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Abstract— In this paper we analyze the behavior of 

asymmetrical spans such as the ones found in wide river 
crossing or in overhead lines with wide spans. In the 
frequency domain, a non-uniform line can be represented by 
a cascade connection of uniform lines with distinct heights. 
This leads to a computationally inefficient line model in time- 
domain. In the frequency domain, the chain matrix can be 
used to improve the efficiency as an equivalent for the whole 
span can be obtained. This equivalent is a multi-input multi-
output frequency dependent network. An analysis of the 
impact of the non-uniform span in an otherwise uniform line 
is investigated. To obtain time-domain responses, the 
Numerical Laplace Transform is used. Several configurations 
are considered, including an unconventional line with a very 
high SIL (Surge Impedance Loading). The results indicate 
that depending on the “type” of span considered very distinct 
transients waveforms can appear. These waveforms have very 
little in common with the ones found when a uniform line is 
considered. 

Keywords: transmission line modeling, non-uniform lines, 
frequency domain, asymmetrical spans  

I.  INTRODUCTION 

N developing countries such as those of the so-called BRIC 
(Brazil, Russia, India, China) there is the challenge to 

transmit bulk power over large distances. For instance, there 
are some possible river crossings for overhead lines that will 
be constructed to connect the power generation in the Amazon 
Basin to the main load centers in the Southeast or Northeast 
part of the country. These river crossings are in the order of 
2 km leading to very tall towers and wide line spans. For the 
analysis of the voltage/current surge propagation near such 
crossings a more detailed line modeling might be needed. 
Typically in modeling overhead lines all the conductors are 
assumed to be at a constant height. This leads to the so-called 
uniform line model where the line can be represented either by 
the Method of Characteristics (MoC – also known as the 
travelling wave method) or a nodal admittance matrix (Ynod). 
In the uniform line case using MoC any transmission line can 
be represented using the appropriate admittance matrix and a 
propagation matrix also known as voltage deformation matrix. 

                     
This work was supported in part by grants from CNPq, Conselho Nacional de 
Desenvolvimento Científico e Tecnológico, Brasil, and from FAPERJ, 
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de 
Janeiro, Rio de Janeiro, Brazil  
L. A. Souza, A. Lima and S. Carneiro Jr. are with Universidade Federal do 
Rio de Janeiro, Rio de Janeiro, Cx. Postal 68504, CEP: 21945-970, Brazil (e-
mail: acsl@dee.ufrj.br, leoaas@hotmail.com, sandoval@dee.ufrj.br). 
 
Paper submitted to the International Conference on Power Systems 
Transients (IPST2011) in Delft, the Netherlands June 14-17, 2011 
 

When Ynod is used, an n conductor line can be modeled using 
two block matrices, one containing the diagonal block sub-
matrices and other the off diagonal submatrices. While MoC 
has been the preferred approach for time-domain 
modeling [1], frequency domain methods use the Ynod 
approach [2]. A nonuniform line (NUL) can be considered as a 
generalization of the uniform line when the heights of the 
conductors are no longer assumed constant. This is the case of 
line spans found in river crossings, valleys or straits. Until 
recently, a direct approach for representing a NUL either in 
time-domain or frequency-domain modeling, demanded a 
discretization of the line in a number of segments of uniform 
lines. The main drawback of this approach is that a heavy 
computational burden may occur in time-domain as the 
segmentation demands the time-step to be smaller than the 
fastest mode found in the uniform lines. If the frequency 
domain is used, a more compact realization can be obtained 
using the chain matrix [2]-[3]. The segmented uniform lines 
matrices are converted to a matrix transfer function also 
known as chain matrix (Qi) with the Ai, Bi, Ci, Di constants. 
The cascade connection of Qi leads to a single matrix which 
then can be converted to a nodal admittance matrix. This 
approach has been used to represent underground cable 
systems with cross-bonding [4] as well as in analyse of 
incident field excitation in overhead lines [5].  

A distinct approach has been proposed in [6] where the A, 
B, C, D constants in the quadrupole matrix are obtained from 
the integration of the frequency domain differential equation 
of transmission lines. Simple linear algebra expressions can 
then be used to convert the A, B, C, and D constants to Ynod. A 
time-domain model using this methodology was presented 
in [7]. 

In this paper we investigate the propagation characteristics 
of two NUL. The first one is a conventional 230 kV line and 
the second one is an unconventional line with a high SIL. The 
Numerical Laplace transform [8] was used to obtain the time-
domain response. The paper is organized as follows: Section II 
presents a brief overview of nonuniform line modeling 
adopted here; Section III presents the test cases results. 
Section IV presents the main conclusions of this work. 

II.  NONUNIFORM LINE MODELING 

A NUL can be modeled in the frequency domain using the 
same voltage/current differential equation as uniform lines. 
The main difference is that for a uniform line the impedance 
and admittance matrices per unit length also vary along the 
line. Equation (1) shows the expressions defining the voltage 
and current vectors for a multi-phase line. 
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Differentiating (1) with respect to x leads to (2). 
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Unlike the uniform line, there is no analytical solution. In the 
past finite differences have been used [9] and numerical 
integration can be used [6]. Another possibility is to assume 
that Z and Y have an exponential dependency with respect to 
x. This procedure is commonly known as exponential line as 
has been applied to lossless lines [10], lossy lines [11] and 
frequency-dependent tower models [12][13]. An alternative 
procedure is the segmentation of the nonuniform line in 
smaller, pseudo-uniform lines. If the line is segmented in such 
a way as the variation in both Z and Y can be disregarded, the 
chain matrix can be used [3][14].  

Consider the nonuniform line represented schematically in 
Fig. 1. The NUL is segmented in several uniform lines with 
constant heights. The average height of the line segment is 
used in each chain matrix. 

Fig. 1.  Schematic representation of a nonuniform line with the chain matrix 
representation.  

 

Traditionally the height of a conductor can be determined 
using the parabolic approximation of the catenary. However, it 
was found that in case of very wide spans, over 1 km, there 
were some noticeable differences [15]. Therefore, it was 
decided to use the catenary equation where the height of a 
conductor along the span is given by  
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where q  is the “specific weight” of the conductor. Thus 
phase-conductors will present distinct sags when compared 
with ground wires. The constant height mh  of the conductors 

to be used in each segment Qi (see Fig 1) is obtained by the 
integration of (3), leading to  
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where x1 and x0 are the x-coordinates that define the length of 
the uniform line approximation.  

The procedure to obtain the equivalent nodal admittance 
matrix is rather straightforward. In order to define the number 
of segments the Courant-Friedrichs-Lewvy, CFL, criterion 
was adopted [14]. This criterion stipulates that the minimum 
length x∆  for the uniform segment is given by 

x v t∆ ≥ ∆  (5) 
where v is the speed of the fastest mode. In this work the 
speed of light was adopted. Another possible criterion for the 
determination of x∆ is to compare the line parameters 
obtained with those using the cylindrical electrode 
formulation [16] or the finite-length parameter 
methodology [18][21]. This comparison is left for future 
research.  

After the length of uniform segment is determined we 
obtain the nodal admittance matrix of each segment, i.e., the 
nodal admittance of a uniform line which is given by  
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with 11 22=Y Y  and 12 21=Y Y  and can be defined in the phase 

domain by 
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where cY is the characteristic admittance matrix and H  is the 

propagation function matrix also known as voltage 
deformation matrix. By using the matrix relation shown in (8) 
the chain matrix of each uniform line segment is obtained. 
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By cascading each transfer matrix an equivalent input-output 
matrix transfer function of the nonuniform line is derived. 
This can then be converted to an equivalent nodal admittance 
matrix as shown in (9). 

1 1

1 1eq

eq eq eq eq eq eq
nod

eq eq eq

− −

− −

 −
 =
 − 

D B C D B A
Y

B B A
 

 
(9) 

It can be proved that (9) is symmetrical [3], thus only three 
block matrices of 

eqnodY  need to be calculated.  

To avoid numerical instabilities it is possible to obtain 
these results using only the smallest eigenvalues in (6). 
References [3] and [4] present more details in that matter. 

III.  TEST CASES 

The first case considered is the same as in [6][7]. It is a 
horizontal line in which adjacent conductors are 10 m apart. 
The conductor radius is 2.54 cm. The water resistivity is 
10 Ω.m. Fig. 2 depicts this configuration.  



A step voltage of 1 V is applied at terminal #1 while 
terminal #2 remains open. The CFL criterion indicates that the 
uniform lines segments should be 30 m in length.  

 
Fig. 2.  First test case  
 

Fig. 3 shows the output on the outside phase conductor at 
terminal #2.  If this curve is compared with Fig. 11 in [7] it 
seems to be a considerable agreement. 

 

 
Fig. 3.  Voltage at the first phase of terminal #2 for a step voltage at terminal 
#1 
 

This case was also used to assess the voltage mismatches as 
a function of the number of chain matrices used to obtain the 
NUL equivalent. The case using 30 chain matrices is used as a 
base of comparison. Table I summarizes this comparison 
where N is the number of chain matrices, ℓ is the length of the 
uniform line segment and Max(∆V) stands for the maximum 
voltage mismatch found in the simulation. 
 
TABLE I –  MISMATCH IN VOLTAGES AS FUNCTION OF THE NUMBER OF CHAIN 

MATRICES USED 
N ℓ  Max(∆V) 

20 30 0.0238651 
30 20 0 
40 15 0.00679813 

 

It is interesting to note that a NUL is not “symmetrical” in 
terms of input/output relationships. For instance, if the step 
voltage is applied at terminal #2 the output is different from 
the one we obtained applying the step at terminal #1. To 
illustrate this behavior, consider a case where the same three-
phase step voltage is applied at terminal #2. The result is 
depicted in Fig. 4 where it is seen that although the voltage 
maxima are similar, the waveforms are considerably different.  
 

 
Fig. 4.  Voltage at the first phase of the term. #1 for a step voltage at term. #2 

 

 
Fig. 5.  Schematic of a full river crossing – second test case 
 

The second case considered is a so-called “full river 
crossing,” consisting of three NULs as depicted in Fig. 5, two 
over ground and one over water. For this case the ground 
resistivity considered was 1000 Ω.m and the water resistivity 
was the same as in the previous case. Again a three-phase step 
voltage 1 V was applied to terminal #1 while terminal #4 
remained open, as shown in Fig. 5. Two strategies were 
considered for the analysis of this configuration: 
 (a) Modeling each span in Fig. 5 by a NUL; 
 (b) Modeling the “up” and “down” spans using NUL while 
the second span, the actual river crossing, is modeled using a 
uniform line. 
 The second span in this case is symmetrical with respect to 
the mid-span so we decided to investigate if we could 
approximate the NUL by a uniform line (UL).  The results are 
depicted in Fig. 6. Case (a) is shown as a solid line while case 
(b) is presented as a dashed line.. As expected case (a) showed 
higher oscillations and although the maxima are close, mainly 
after 20 ms, the waveforms are rather distinct. The UL 
approximation of the second span lead to a results with a 
distinct waveform, although the highest values found in both 
cases were very close.  
 Even though not yet considered in these two cases, the 
presence of ground wires can significantly affect the voltage 
waveforms. Fig. 7 shows the voltage at terminal#2 for the first 
case when the overhead line has ground wires. These were 
3/8” EHS, located 5 meters above the phase conductors and 
seven meters away for the central phase. These coordinates 
were obtained by applying the electrogeometric model. The 
ground-wires were assumed grounded at the tower for this 
analysis. As it can be seen the waveform is now much 
“smoother” and with considerably lowers peaks. 
 



  

Fig. 6.  Voltage output for a full river crossing  

 
Fig. 7.  Voltage at the first phase of terminal #2 for a step voltage at terminal 
#1 considering ground wires 
 
The last case considered is shown in Fig. 9, which is typical of 
a large river crossing as can be found in the Amazon Basin. In 
this case, the distance from shore to shore may be higher than 
2 km, it should be point out that the Amazon river and some of 
its affluent are much wider at other location. The line 
configuration is shown in Fig. 8 with the conductors at the 
minimum height. It is essentially the same circuit that was 
used in [19] but with a higher nominal voltage. It is a 1000 kV 
overhead line with a nominal power of 8 GW. Phase 
conductors are Bluejay and ground wires are 3/8” EHS. The 
line has an unusual bundle arrangement to maximize the 
transmitted power. More details regarding the line design can 
be found in [20]. 
 Fig. 9 depicts a possible configuration for the crossing of a 
wide river.  In the first scenario we consider for both the first 
and third spans a constant resistivity ground as in the other 
cases, 1000 Ω.m. A second scenario was the application of a 
more detailed soil model for these spans. In this case, the 
frequency dependency on both ground conductivity and 
permittivity is considered [21]. This type of soil modeling is 
based on experimental measurements firstly carried out in the 
Amazon region, thus being more than suitable for the analysis 
of a possible transmission system in this area. In Appendix A 
some basic information on the frequency dependent soil model 
is provided.  
 For the second span, over water, a simple, pure 
conductivity soil model was used with the same parameter as 
before.  The ground wires were assumed continuously 

grounded, i.e. grounded at every tower. As before, a three-
phase step voltage is applied to terminal #1 while terminal #4 
remains open. 

 
 
Fig. 8.  Voltage at the first phase of terminal #2 for a step voltage at terminal 
#1 considering ground wires 
 

 
Fig. 9.  Schematic for a wide river crossing  
 
Fig. 10 shows the voltage output in the outside phase on 
terminal #4. It can be seen that the presence of ground wires 
and a more detailed soil modeling has decreased the highest 
peaks and created a highly damped voltage. The effect of the 
soil in NUL seems to affect mainly the amplitude. 
  

 
Fig. 10.  Voltage at terminal #4, first phase, considered two soil modeling for 
the first and third spans.  

IV.  CONCLUSIONS 

This work has focused on the analysis of the voltage 
propagation characteristic of NUL. The NUL was obtained by 
a cascade of several uniform line segments with distinct 



heights. An analysis of a simple case each with a distinct 
number of chain matrices indicated that a rather simple 
approach can be used to determine the minimum length of the 
uniform line to be used. 

The presence of NUL increases the voltage oscillations and 
introduces distinct frequency oscillations. If the NUL presents 
some symmetry its impact is considerably lower, i.e, the 
presence of symmetrical spans tends to minimize the effect of 
the NUL.  

The overall behavior of the overhead lines was essentially 
the same, regardless of conductor (bundle) arrangement. The 
line with a high SIL and non-identical bundles presents 
waveforms quite similar to those found for the case of a single 
conductor overhead line. 

The presence of ground wires has a pronounced effect of 
the voltage attenuation thus being a key element for the 
overvoltage analysis of a NUL system involving an 
asymmetrical span. 

Future research considering the response of the lines having 
high SILs at high frequencies is still needed. For instance, the 
influence of the tower and of the tower grounding on the 
behavior to the voltage remains to be determined. 

V.  APPENDIX A  

The ground propagation constant is given by 

( )s j j jγ ωµ σ ωε ωµσ= + ≈  

as for a purely resistive soil is assumed σ>>ωε. For the case 
where the frequency dependent soil is considered the model is 
represented by an imittance κ(ω) given by 

( ) 0j jσ ωεκ ω σ ωε σ δ δ= + = + +  

where 0σ  is the low frequency soil conductivity in S/m and 

can be obtained by conventional techniques. Despite its 
simplicity this model has provided accurate representation of 
different sites, with distinct soil and geological structures. The 
part responsible by the frequency dependency in the soil 
parameters is given by 
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In the expression above both ∆ and α are constant. These 
parameters were determined assuming a Weibull distribution 
of the soil samples. For the cases considered here we have 
used a specific set of measurement which led to 

38.92028 10          0.71603α∆ = ⋅ =  
Thus the ground imittance to be used in the evaluation of the 
line parameters is given by 

( ) ( )3 0.71603 610 0.057849 0.12097 10jκ ω ω− −= + +
 

with the value of κ(ω) the ground propagation constant is 

obtained for every frequency. The line parameters can be 

obtained using the Gaussian quadrature of the infinite integrals 

in Carson’s formulation. If the complex ground plane is to be 

used, complex penetration depth is defined by the following.  

( )( ) 1
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