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Abstract—In this paper a new method has been proposed for 
calculating the frequency-dependent parameters of underground 
cables. The method uses full-wave formulation for calculating the 
modal electromagnetic fields and corresponding voltages and 
currents and then extracting frequency-dependent per-unit-
length parameters of underground cables. The proposed method 
can be used for any cross-sectional shape of cables. Single coaxial 
cables and sector shaped cables are studied in this paper and the 
calculated per-unit-length parameters are compared with those 
obtained from PSCAD/EMTDC and other methods available in 
the literature. 
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I.  INTRODUCTION

he accurate calculation of propagation characteristics of 
buried cables embedded in lossy earth is required for 

power system transient analysis. Most simulation methods 
utilize quasi-TEM based formulations [1], [2] that are 
reasonably valid at power frequencies, however, they become 
inaccurate at higher frequencies. Further, measurements on 
cable systems show that the proximity effect strongly 
influences the wave propagation in cable systems, and 
commonly-used models are incapable of reproducing 
measurement results. In [3], it is shown that simulation results 
are not consistent with measurements for the inter-sheath 
mode excitation of a system of three cables. The ground mode 
is also very important for underground cables that has to be 
evaluated accurately at higher frequencies. 

The approach of this paper is based on a full-wave 2D 
modal analysis of cables buried in lossy ground using finite 
element method. Solving an eigenvalue problem determines 
the electromagnetic field distribution over the cross section of 
the cable, as well as the attenuation and phase constants for all 
possible modes. Line voltages and currents are calculated by 
integrating the electric and magnetic fields, respectively. Once 
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the modal voltages and currents are determined, we calculate 
the per-unit-length parameters of the cable system under study 
at the frequency of interest. 

In this paper, we present a comparison between modal 
attenuation and phase constants calculated using the proposed 
full-wave modal analysis approach and those calculated using 
formulations commonly-used in power system transient 
simulation. It is shown how the differences become more 
significant at higher frequencies and how the proximity effect 
influences the propagating modes in a system of cables. 
Frequency-dependent per-unit-length resistance, inductance, 
and capacitance are also calculated and compared. This 
approach is not limited to any specific geometry and can be 
applied to cables with an arbitrary cross section such as 
sector-shaped cables. 

II.  FULL-WAVE MODAL ANALYSIS

In this approach, it is assumed that electromagnetic fields 
propagate in the axial direction of the cable, z axis, as given 
by, 

E(x, y, z) Ê(x, y)e ( j )z , (1a)

H(x, y, z) Ĥ(x, y)e ( j )z , (1b)
where,  and  are the attenuation and phase constants of the 
electric field, E, and the magnetic field, H. Solving an 
eigenvalue problem using the Finite Element Method1 (FEM) 
will determine the electromagnetic fields at any point in the 
2D space and the corresponding attenuation constant, , and 
phase constant, .

To calculate the voltage of the ith conductor of the cable 
(Vi), the electric field is integrated along path i from the 
reference point at the boundary of the lossy ground (O) to a 
point on the conductor (Ci) using (see Fig. 1), 

Vi E dl
O

Ci

. (2) 

The current of the ith conductor of the cable (Ii) is 
determined by integrating the current density over the surface 
of the ith conductor as given by, 

Ii J ds
Si

Ez dx dy
Si

, (3) 

where,  is the conductivity of the conductor. The so-
calculated line voltage and current will also propagate with the 
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same propagation constant,  =  + j , as the electromagnetic 
fields.

Now consider an n-conductor cable system whose voltages 
and currents satisfy the multiconductor transmission line 
equations given by [4], 

)()( zz
dz
d ZIV , (4a) 

)()( zz
dz
d YVI . (4b) 

In (4), V is the n×1 vector of line voltages, and I is the n×1
vector of line currents of the cable system. Z and Y are n×n
per-unit-length impedance and admittance matrices, 
respectively. In the modal excitation of the cable system, for 
each mode, the electromagnetic fields, and consequently, the 
line voltages and currents propagate with the same 
propagation constant. In other words, for each propagating 
mode we can write, 

z
mez VV )( , (5a) 

z
mez II )( . (5b) 

The n×1 vectors Vm and Im in (5) are the modal line voltages 
and currents that are calculated by integrating the 
electromagnetic fields. In the case of 2D simulation of a 3D 
structure, the third dimension is assumed to be infinitely long. 
That makes the transmission line reflectionless. Substitution 
of (5) in (4) yields, 

mm ZIV , (6a) 

mm YVI , (6b) 
where, , Vm, and Im are known and have been determined 
using the full-wave modal analysis of the cable system.  

Once we write (6) for all n propagating modes, we have a 
set of linear equations whose solution will provides us with 
the unknown per-unit-length impedance and admittance 
matrices. For example, for the case of a two-conductor cable, 
where we have two propagating modes, (6) can be written as, 
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In (7), k represents propagation constant of the kth mode, and  
Vi

k and Ii
k are the voltage and current of the ith conductor for 

the kth mode. The impedance and admittance matrices can be 
calculated using, 
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III.  CASE STUDIES

A.  Single Coaxial Cable 
To verify the validity of the proposed method, we will first 

analyze a single coaxial cable and compare the results with 
those obtained from analytical formulation used in 
PSCAD/EMTDC. The cable used for the simulation has 
dimensions as shown in Fig. 2. The radii a, b, c, and d are 
2cm, 4cm, 4.25cm, and 5cm, respectively. The conductivity of 
core and sheath are 108 and 5×107 S/m, respectively. The 
relative permittivity of the ground, insulator 1, and insulator 2 
are 1, 3, and 2, respectively. Ground conductivity is 0.01 S/m. 
We will also present a parametric analysis when the burial 

Fig. 2.  Dimensions of the single coaxial cable used for the simulation.

Fig. 3.  Electric field distribution for the propagating modes of a two-
conductor coaxial cable; a) coaxial mode, b) ground mode. 

a) b) 

 
Fig. 1.  The geometry of a two-conductor cable buried in lossy ground and the 
integration paths for the calculation of the conductors voltages. 



depth varies. 
The single coaxial cable will have two propagating 

transmission-line modes. They are coaxial and ground modes. 
The electric field distributions of the modes are given in Fig. 
3. Three different burial depths were chosen. They are 0.055m 
(depth 1), 0.15m (depth 2) and 1m (depth 3). The depths are 
measured from ground surface to the center of cable. In Figs. 
4 and 5, we have plotted the variation of the attenuation and 
propagation constants with frequency. By 0/  we mean the 
ratio of the phase constant in free space over that in the given 
cable which is equal to the propagation speed of the mode 
over the speed of light. The phase constant and the attenuation 
constant for coaxial modes are the same in PSCAD/EMTDC 
and full-wave method. But, for the ground mode, both phase 
and propagation constant are different especially at higher 
frequencies. The effect of varying the ground depth is 
opposite in the two methods. When the burial depth of the 
cable is decreased, the attenuation increases in the full-wave 
method. This can be justified as when the cable moves closer 

to the ground, the ground current has a smaller area to flow, 
so, conceptually the attenuation should increase. Same effect 
can be observed in the elements of the resistance matrix as 
shown in Fig. 6. In the full-wave method, the resistance 
decreases with an increase in the burial depth. Also, the full-
wave simulation shows a more significant change as the burial 
depths varies, especially for the first two depths.  

 When the cable is near ground (for depths 1 and 2) even a 
change in depth of about 10 cm causes a significant change in 
the attenuation constant and, consequently, the elements of the 
resistance matrix. The inductance values (see Fig. 7) are also 
different at higher frequencies. At lower frequencies they 
seem to be converging to those calculated by current 
formulations. The values of the elements of capacitance 
matrix (see Fig. 8), calculated by both PSCAD/EMTDC and 
our method, are consistent and show almost no significant 
variation with frequency.  

B.  Sector Shaped Cable 
An advantage of the proposed method is that it is not limited 
to any specific cross sectional geometry of the cables system. 
To demonstrate this, we choose a sector shaped cable as given 
in [5]. The dimensions are given in Fig. 9. The cable is buried 
at a depth of 1m in the ground. Ground conductivity and 
relative permittivity are 0.01 S/m and 1, respectively. The 
electric field distribution for this cable is shown in Fig. 10. 
We can see four propagating modes in this figure. The first 
two modes use two of the sector shaped conductors, whereas, 
in mode 3, the current flows in the sector shaped conductors 
and returns through the sheath. The fourth mode consists of a 
transmission-line mode between the sheath conductor and the 
lossy ground. 

Both the phase and attenuation constants (see Fig. 11) are 
not changing much with frequency for the inter-core modes 
(modes 1 and 2) and the coaxial mode (mode 3). Values for 
these three modes are very close. However, the ground mode 
(mode 4) is significantly slower than the other modes and its 
propagation characteristics are highly dependent on the 
frequency. 
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Fig. 4.  Relative phase constant (relative to that of free space) for the coaxial 
mode (mode 1) and the ground mode (mode 2) and for different burial depths.
The value of frequency is in [Hz]. 
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Fig. 5.  Attenuation constant for the coaxial mode (mode 1) and the ground 
mode (mode 2) and for different burial depths. The value of frequency is in 
[Hz]. 
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The resistance, inductance, and capacitance values for 
different frequencies are plotted in Figs. 12 and 13. All the 
elements in capacitance matrices except C44 are almost 
constant for all frequencies.  

The same sector shaped cable, with no ground, has been 
simulated in [5] using the partial subconductor equivalent 
circuit (PSEC) method. The values of the self and mutual 
resistance and inductance obtained using the PSEC method 
and the full-wave method (at 500kHz) are compared in Table 
I. This comparison shows a good agreement between the 
methods. Our full-wave modal analysis technique is also able 
to evaluate the capacitance. The self and mutual capacitances 
for the sector shaped cable of [5] are 614 and 169.66 nF/km, 
respectively.

TABLE I
COMPARISON BETWEEN PSEC AND FULL-WAVE METHOD AT 500KHZ WHEN 

THE SECTOR SHAPED CABLE IS SIMULATED WITHOUT GROUND.
 Rself 

(ohm/km) 
Rmutual 

(ohm/km) 
Lself

(μH/km) 
Lmutual

(μH/km) 
PSEC 14 8 105 40 
Full-wave 13.87 8.1 100.2 38.3 

Fig. 9.  Dimensions of the sector shaped cable. The cable is buried in a depth 
of 1m in a lossy ground with a resistivity of 0.01 S/m and a relative 
permittivity of 1. 

Fig. 10.  Electric field distributions of the sector shaped cable for different 
propagating modes; a) inter-core mode 1 (mode 1), b) inter-core mode 2 
(mode 2), c) coaxial mode (mode 3), d) ground mode (mode4). 
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Fig. 11.  Attenuation and phase constants for all fours modes of the sector
shaped cable shown in Fig. 9. The value of frequency is in [Hz].

105 106
0

0.5

1

1.5
x 10-6

Frequency

L1
1

105 106
0

0.5

1

1.5
x 10-6

Frequency

L1
2

105 106
0

0.5

1

1.5
x 10-6

Frequency

L2
2

pscad depth 1
comsol depth 1
pscad depth 2
comsol depth 2
pscad depth 3
comsol depth 3

Fig. 7. Elements of the per-unit-length inductance matrix for three different 
burial depths. The value of inductance is in [H/m] and frequency is in [Hz].

105 106
2.4

2.45

2.5

2.55
x 10-10

Frequency

C
11

105 106

-2.45

-2.4

-2.35
x 10-10

Frequency

C
12

105 106
8.5

9

9.5

10
x 10-10

Frequency

C
22

pscad depth 1
comsol depth 1
pscad depth 2
comsol depth 2
pscad depth 3
comsol depth 3

Fig. 8. Elements of the per-unit-length capacitance matrix for three different 
burial depths The value of capacitance is in [F/m] and frequency is in [Hz]. 

a) b) 

c) d) 

0/

 
[dB/m] 



IV.  CONCLUSIONS

In this paper, a full-wave modal analysis technique was 
introduced for the calculation of frequency-dependent per-
unit-length parameters of underground cables buried in lossy 
earth. This method makes no approximation for the 
calculation of ground impedance and is valid at high 
frequencies as well. The proposed method is capable of 
simulating cables of any shape. It is also not limited by the 
number of conductors. Skin effect and proximity effect are 
considered in the calculation of the cables per-unit-length 
impedance and admittance matrices. We examined two 
examples in this paper. A single two-conductor coaxial cable 
and a four-conductor sector shaped cable were studied and 
their parameters were compared with those obtained from 
other techniques and formulations. The full-wave modal 
analysis is not practical at low frequencies, as at these 
frequencies the propagation constant of the modes are very 
close and it is not easy to distinguish them from each other. 
However, at low frequencies, the quasi-static formulation is 
very accurate and can be used. Transient simulations in 
EMTP-type programs will become more accurate if the high 
frequency per-unit-length parameters calculated in this paper 
replace those calculated using the available analytical 
formulations. 
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