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Abstract--The paper presents a general methodology based on 

the matrix pencil method (MPM) for rational fitting of frequency 
domain responses to be properly incorporated in time domain 
analysis. The method involves three distinct stages. First, the 
frequency domain response is approximated by a sum of 
exponential functions using the MPM. The time domain 
representation of the obtained exponentials is then directly 
derived by a closed form inverse Fourier transform. Finally, the 
MPM is used again to estimate the poles and residues from the 
time domain function. The main feature of the method is its 
direct solution, hence, avoiding any iteration in the estimation 
process. Moreover, the method needs no starting poles as 
opposed to the iterative methods such as vector fitting (VF) 
method. The approach is validated by comparing the results with 
those obtained either analytically or by the VF method for 
different frequency responses. Several case studies including 
frequency response of a distribution transformer as well as a 
buried coaxial cable are presented to show the generality of the 
proposed method. 
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I.  INTRODUCTION 

ccurate inclusion of frequency dependent effects in time 
domain simulations has attracted great attention in recent 

years [1]-[4]. It is important in the sense that there are many 
cases such as transmission lines and grounding systems in 
which frequency dependency might arise needing to be 
properly investigated via time domain codes. This frequency 
dependency is of great importance in many power system 
problems including transformers, transmission line and cables 
as well asElectromagnetic Compatibility (EMC) problems 
such as transient analysis of grounding systems. The tendency 
towards using time domain codes for the analysis of the above 
mentioned problems stems from their capability to model 
complex networks. Moreover, nonlinear elements such as 
arresters are amenable to time domain solutions. Time-domain 
techniques can be used in a straightforward way to treat 
nonlinearities such as arresters. However, frequency 
dependency needs to be incorporated into the technique 
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through convolution integrals, which would result in 
significant increase in the computation time. 

In this paper a general methodology based on the Matrix 
Pencil Method (MPM) for the fitting of frequency domain 
responses is introduced [5]. The method estimates the poles 
from the measured or calculated frequency domain responses. 
The proposed technique is well-suited for the estimation of 
any type of functions with a high number of resonances as 
well as functions contaminated by noise.Contrary to the vector 
fitting (VF) method; the proposed technique is a direct 
solution and avoids any iteration in the estimation process. 
Moreover, it needs no starting poles while VF is based on 
iteratively relocating initial poles set to better locations and its 
convergence might even stall in practical cases where the 
signal is noisy. 

In order to evaluate the performance of the proposed 
technique, various case studies will be presented. We first use 
the method to approximate a known analytic frequency 
domain function. The method is then applied to the case of a 
distribution transformer as well as a coaxial cable system. 

II.  THEORY 

Without losing any generality the frequency response of a 
system is supposed to be constituted by the sum of complex 
exponentials. This approximation is properly done in 
frequency domain by use of the MPM [5]. Although the 
detailed formulation of the MPM can be found in [6], the 
theory is customized here for the frequency domain 
application. A summary of the theory is given below for the 
ease of understanding. The general form of a frequency 
domain response can be written as, ���� � ����� � �	��� 
 �� �
�����
�� � �	������
��  (1) 

where ���� is the frequency domain response involving two 
distinct terms; �����that represents the pure response signal 
and 	��� that accounts for the noise of the system (seen most 
often in measured data). In (1), �
 and �
 are complex-valued 
constants. 

By discretizing (1), with a sample frequency of ��, we 
obtain, ������ � ������� � �	����� 
�� �
�
����
�� � �	����������������� � ������ � �  ! � (2) 

where �
 � �����
���� �����" � ���� �� � �# ! � 
The aim is to find the best estimatesfor#��
 �$	%��
 � " ��� �� �� � �#. This problem is generally treated as a nonlinear 

problem. We resort to the MPM to obtain the targeted 
aforementioned parameters [5]. 
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A.  Matrix Pencil Method 
Let’s ignore the noise in (2) and assume two matrices &'�( 

and &')( as follows, 
&'�( � � * �� �) + �,�) �- + �,.�/ / + /�0�, �0�,.� + �0��1�0�,�2, (3) 

and 

&')( � � * �� �� + �,���� �) + �,/ / + /�0�,�� �0�, + �0�)1�0�,�2, (4) 

So &'�( and &')( can be written as, &'�( � � &3�(&�(&3�(&3)( (5) &')( � � &3�(&�(&3)( (6) 

where 

&3�( � � * � � + ��� �) + ��/ / + /��0�,�� �)0�,�� + ��0�,��1�0�,�2� (7) 

&3)( � � 455
6� �� + ��,��� �) + �),��/ / + /� �� + ��,��78

89
�2,

 (8) 

&3�( � %"$:���� �)� � � ��� (9) &�( � %"$:���� �)� � � ��� (10) 

Now we introduce the matrix pencil as generalized 
eigenvalue problem [6], &'�( ! ;&')( � � &3�(&�(<&3�( ! ;&=(>&3)( (11) 

where &=( is the # 2# identity matrix. The rank of the left 
side of (11), will be # if �# ? @ ?  !A [6]. However, if ; � ��
 �� " � �� �� � �#, the rank is reduced to # ! � since the 
ith row and column of &3�( ! ;&=( become zero. Hence, �
is 
found by solving the generalized eigenvalues of &'�( ! ;&')(, 
i.e., &'�(&B
( � � �
&')(&B
( (12) 

where &CD( is the generalized eigenvectors corresponding to ED, 
or in the equivalent form, <&')(F&'�( ! �
&=(>&B
( � � (13) 

where &')(F is the Moore-Penrose pseudo-inverse of &')( or &')(F � <&'�(G&'�(>��&'�(G (14) 

and the superscript ‘H’ denotes the conjugate transpose 
operation. 

We can obtain ED from the eigenvalues of &I)(F&I�(. Hence, 
the complex value (�
) obtained directly in a one step process 
by making use of the MPM. 
Having obtained # and �
, the complex amplitude (�
) can be 
easily achieved by solving a least-square problem as, 

* ����/�0��1 � *
� � + ��� �) + ��/ / + /�)0�� �)0�� + ��0��1 *

���)/��1 (15) 

B.  Closed Form Inverse Fourier Transform 
As described earlier, for a frequency domain response, '���, it can be sampled at J� and represented in the following 

form '��� � � BK���K�� �����K�� (16) 

where BK and �K are the complex-valued constants. If '��� is 
causal and bounded, it is necessary that ���<�K> �? �� (17) 

Then the time domain representation of I��� can be 
directly obtained by making use of the closed form Inverse 
Fourier Transform (IFT) as [7], ��L� � ���<'���> 
 � MNON�PN�Q�RN�ST�Q�RN�U.ONUV���K��  (18) 

where WK � ! �)S��<XK>, YK � ! �)S =Z<XK>, [K � ��<BK>�� 
and, �%K � =Z<BK>. Since ��L� is obtained by (5), sampling 
time is not required to be restricted by \L � � �\�] . 

Once the time domain representation of the frequency 
domain response is obtained, the MPM is again utilized in 
time domain to calculate the poles and residues of the time 
domain function [7]. It is then possible to model the time 
domain function as a sum of complex exponentials as, ��L� � � �
^��
�� �����
L� (19) 

It is well known that for a linear time-invariant system, the 
eigen-functions of the transfer operator are of the form���_Q 
where �
 are the poles of the system while �
 stand for the 
system residues. The exponential representation of ��L� can be 
finally cast in a rational form, thus permitting the inclusion of 
frequency dependency in time domain codes, i.e., '�X� � � `_a�a_^��
��  (20) 

It is worth noting that the MPM is also able to extract the 
poles and residues when the frequency response is 
contaminated by noise. It is done following the method 
described in [6]. 

III.  NUMERICAL ANALYSIS AND RESULTS 

To demonstrate the generality of the proposed technique, 
we consider different frequency responses including the 
frequency response of a distribution transformer and a buried 
coaxial cable. Prior to apply the method on these cases, we 
first verify the method with a known frequency response 
function. 

A.  Known Frequency Response Function 
To demonstrate the validity of the proposed technique we 

assume a known transform function as, 

'�b� � �� �c.de��c.de�U.efU � �) eg�c.de�U.egU � �- ��c.de�U (21) 



where the coefficients are as follows, h � �� ��� � �i��� �) � �i�j� ��- � �ik� �b� � �� �b� � �i� 
Using the Fourier transform table [8] the exact IFT of  '�b� is ��L� � ���<'�b�> ���cQ l�� [mX�b�L� ��) X"	�b�L� � QU) n o�L� (22) 

'�b� is first sampled with \� � �i�� and N=201 points. 
Following the procedure described in the section II. A, we first 
apply the MPM to '�b�. The obtained complex valued 
coefficients are listed in Table I. 

TABLE I 
ESTIMATED COMPLEX VALUED COEFFICIENTS FOR THE VERIFICATION 

EXAMPLE (21). Z �K� �K�
0 -13.7414 -41.6368i 0.0723 + 0.1453i 
1 -9.7914 -23.9459i 0.4118 + 0.6191i 
2 -7.8377 -15.6052i 0.1531 - 0.8239i 
3 -5.8165 - 6.8079i 0.7690 + 0.9380i 
4 -3.4340 - 2.3513i 0.4723 - 0.7540i 
5 -1.0601 - 0.4316i -0.0739 - 0.1240i 

The frequency domain original data are shown in Fig. 1. 
Also shown in this figure is the MPM approximation of the 
data. It is clearly seen form the figure that the MPM results in 
a very good approximation of the data in frequency domain. 
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Fig. 1.  Frequency domain original data together with its MPM counterpart 
(real and imaginary). 

B.  Time domain representation 
Having obtained the exponential representation of the 

frequency domain response, we now apply the closed form 
IFT to the data obtaining its time domain response. The real 
poles and residues of the time domain signal are listed in 
Table. II. Results associated with the closed-form IFT are 
shown together with their analytical counterparts (18) in Fig. 
2. It is seen that our results are generally consistent with their 
analytical counterparts. 

C.  Distribution Transformer 
To further evaluate the efficiency of the proposed method, 

we consider the measured frequency response of a distribution 

transformer for which the results are available in [9]. Fig. 3 
shows the measured frequency response together with the 
fitted curve obtained by the VF method and the MPM. It is 
seen that the vector fitting method accurately estimates the 
function. The MPM curve has very close overlay with the 
original data. It is noted that, the two estimation methods 
differ in terms of their mathematical foundation. However, the 
MPM is not prone to the initial poles and avoids any iteration 
in the approximation procedure. This might help us with the 
convergence of the method as well as the computational 
burden. Table III shows the complex valued coefficients of the 
transformer frequency response. 

TABLE II 
ESTIMATED POLES AND RESIDUES FOR THE VERIFICATION EXAMPLE (21). Z� �K� �K�

0 -0.9038 + 2.0276i 0.0382 - 0.5129i 
1 -0.9038 - 2.0276i 0.0382 + 0.5129i 
2 -0.5917 + 0.3040i -0.0345 - 1.0358i 
3 -0.5917 - 0.3040i -0.0345 + 1.0358i 
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Fig. 2.  Time domain representation of the frequency domain data shown in 
Fig. 1. 

D.  Cable System  
In the final example, we consider a buried coaxial cable. 

The case contains 3 identical single-core cables, each one has 
two conductors. The complete layout is shown in Fig. 4. The 
burial depth is 0.5 m and the ground resistivity is 250 ohm-m. 
The cable length is assumed to be 1 km for the calculations. 
The geometrical and electrical data associated with this cable 
system are shown in Table IV. Each conductor is associated 
with a non-zero phase number, thus the generated model for 
this example will have 6 different modes (6 wires). Fig. 5 
shows the magnitude of the characteristic admittance (Yc) for 
different modes while the propagation functions for mode 1 
and 6 are shown in Fig. 6. It is seen that the technique 
succeeds to approximate the frequency response for different 
modes. Having obtained the complex values of the 
characteristic impedance and the propagation function its 
respective time domain representation could be obtained 
following the procedure described in section II. 
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Fig. 3.  Frequency domain original data together with its MPM and VF 
counterparts. 

TABLE III 
ESTIMATED COMPLEX VALUED COEFFICIENTS FOR THE FREQUENCY RESPONSE 

OF THE DISTRIBUTION TRANSFORMER AS SHOWN IN FIG. 3. Z �Kp�e-4 �K 
0 -0.0023 - 0.2064i 0.0098 - 0.0062i 
1 -0.0019 - 0.0107i 0.0062 + 0.0438i 
2 -0.0024 - 0.1304i -0.0029 - 0.0112i 
3 -0.0037 - 0.0913i -0.0182 - 0.0163i 
4 -0.0064 - 0.0654i 0.0501 - 0.0129i 

TABLE IV 
GEOMETRICAL AND ELECTRICAL DATA ASSOCIATED WITH THE STUDIED CABLE 

SYSTEM. 

Conductors Insulators 

N 
Inside 
Radius 
(m) 

Outside 
Radius 
(m) 

Resistivity 
(ohm-m) 

Phase 
Number 

Relative 
Permittivity 

Loss 
Factor 

1 0.00317 0.01254 0.17e-07 1 3.5 0.001 
2 0.02273 0.02622 0.21e-06 2 2.0 0.001 

 

 
 

Fig. 4.  Single core coaxial cable layout. 

IV.  NUMERICAL CONSIDERATION 

As described earlier, we use the matrix pencil as 
generalized eigenvalue problem expressed by (11).The choice 
of M (dimension of the unitary matrix I in (11)), determines 
the precision of the method. To this aim, we take the 
advantage of the ratio of the singular values to the maximum 
singular value as, qr qstuv � ����w (23) 

where � is the number of significant decimal digits in the data. 
The number of singular values is then equal to A selected 
based on (23). � is also used to control the performance of 
higher order approximations. Moreover, to suppress the noise 
effects, the spurious singular values should be neglected. It is 
noted that in order to obtain the residues, �
, a typical least-
square problem such as (15) is solved. 
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Fig. 5.  Characteristic admittance Yc for the cable system shown in Fig. 4 
(mode 1, 3 and 6). 
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Fig. 6.  Propagation function for the cable system shown in Fig. 4 (mode 1 and 
6). 

As to the stability of the method, it is very important to 
note that the real part values of �K obtained by (16) plays the 
main role in the stability of the method. In cases where, there 
exist complex-valued constants (�
) with positive real values, 
the method fails to estimate the real poles and residues. One 
can use a kind of normalization to circumvent this problem. 

It is worth noting that the method is amenable to multiport 
applications as well. In fact, either a state-space model or an 
equivalent circuit model could be properly utilized to model 
multiport systems. Further discussions together with more 
examples will be given in the future works. 

105 106
10-4

10-3

10-2

10-1

100

 

 

Original data(Frequency response)
Vector fitting(Frequency domain rational approximation)
MPM(Frequency domain exponential approximation)

10-4 10-2 100 102 104 106
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

 

 

Yc#1
Yc#1(MPM)
Yc#3
Yc#3(MPM)
Yc#6
Yc#6(MPM)

104 105
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

H#6
H#6(MPM)
H#1
H#1(MPM)



V.  CONCLUSION 

A general methodology based on the matrix pencil method 
(MPM) for rational fitting of frequency domain responses was 
proposed. The method could be properly used to incorporate 
the frequency dependency in time domain analysis. The 
method involves three distinct stages. First, the frequency 
domain response is approximated by a sum of exponential 
functions using the MPM. The time domain representation of 
the obtained exponentials is then directly derived by a closed 
form inverse Fourier transform.  Finally, the MPM is used 
again to estimate the poles and residues from the time domain 
function. The main feature of the proposed method is its direct 
solution, hence, avoiding any iteration in the estimation 
process. Moreover, the method needs no starting poles as 
opposed to the iterative methods such as vector fitting (VF) 
method. The approach was validated first by a known 
analytical frequency domain function. In the final set of the 
results, the efficiency of the method was demonstrated for the 
case of a distribution transformer as well as a cable system. It 
was shown that the method could be a powerful alternative for 
incorporating the frequency response of different systems in 
time domain codes. 
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