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Abstract— The paper demonstrates that state-space grouping 

can be used to allow a modulation of computational burden 

between state-space and nodal equations. In addition to off-line 

examples, the described methodology offers many advantages for 

real-time simulation methods. In fact it provides a solution to 

otherwise unrealizable simulations in real-time mode. 

Index Terms—state-space, nodal analysis, electromagnetic 

transients, real-time. 

I. INTRODUCTION 

he computation of electromagnetic transients is based on 

numerical methods for the formulation and solution of 

network equations. The most widely used methods fall into 

two categories: the state-space and nodal analysis 

formulations. State-space equations are used in [1] for 

inserting electrical circuit equations into the Simulink solver. 

Nodal equations are widely used in EMT-type 

(Electromagnetic Transients) applications, such as [2]. Some 

real-time simulator technologies are also based on the nodal 

formulation [3][4]. The modified-augmented-nodal analysis 

(MANA) has been introduced in [5],[6] for eliminating 

topological restrictions from the classical nodal analysis 

approach. Since MANA equations are more general they are 

referred to hereinafter in this paper. 

MANA equations are assembled efficiently and directly  

after discretizing all circuit devices with a numerical 

integration rule such as trapezoidal integration. Such equations 

are suitable for simulating very large networks through sparse 

matrix methods. 

In state-space equations the numerical integration technique 

is selected after formulation, which simplifies the 

programming of variable time-step integration techniques. In 

addition state-space representation can be particularly 

powerful for controller design methods [1]. The automatic 

synthesis process of state-space matrices requires the 

determination of the network topological proper-tree and can 

become extremely inefficient for large networks. 
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Complications can arise for the simultaneous solution of 

nonlinear models, for the simulation of large networks and for 

large numbers of states in some model equations. 

Some variations of the nodal approach are based on the 

concept of group separation for increasing efficiency and 

flexibility. In [7] the use of groups provides a technique for 

diminishing the number of nodal points and consequently the 

size of the system matrix for real-time computations [8]. In [9] 

the compensation method allows separating circuits and 

solving them independently. The compensation method is non-

iterative when the solved circuits are linear. A similar idea for 

the linear case is used in [10] for reducing the number of nodal 

connection points. In [11] state-space equations are also used 

for this purpose. 

The inclusion of state-space equations into nodal equations 

has been applied in [12] (see also [13]) for the purpose of 

model circuit synthesis from fitted measurements. 

This paper presents the theoretical formulations and 

backgrounds  through which MANA and state-space equations 

can be simultaneously combined for arbitrary network 

topologies. The proposed combination allows eliminating 

several modeling limitations in state-space based solvers. It 

also allows creating state-space groups that can be maintained 

independently thus avoiding problematic (memory limited) 

massive pre-calculations of state-space matrix sets for all 

possible switch position combinations [14]. In addition, each 

state-space group uses its own automatic formulation of state-

space matrices which obviously reduces the formulation time 

when compared to unique state-space equations of the 

complete system without grouping. 

The method proposed in this paper contributes to the 

improvement of state-space based power system simulation 

solvers. It notably offers important advantages for real-time 

applications. The paper follows the initial works presented in 

[15] and contributes a new theoretical analysis, generalization 

and new simulation results. 

The reference state-space and MANA solvers used in this 

paper are those presented in [1] and  [16] respectively. 

II. THEORETICAL FORMULATION 

A. Hybrid analysis 

Hybrid analysis [17], [18] is a generic method for 

formulating network equations. It can be used to derive other 

formulations and to create relations between different circuit 
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equation systems.  In hybrid analysis, branch voltages and 

currents can be related as follows 
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The above hybrid analysis formulation is specific to this paper 

and allows to separate nonlinear components from linear 

components. Bold characters are used hereinafter to denote 

vectors and matrices. The subscripts are defined as follows: n 

stands for generic nonlinear or nodal in the particular case, x 

stands for state variables, v is for voltage ports, i is for current 

ports, a indicates independent voltage sources and b indicates 

independent current sources. The vector 
xvI , for example, 

holds the currents of all voltage ports that are extracted from 

the network as state variables, whereas the vector 
nvI  holds 

the currents of all voltage ports identified as generic nonlinear. 

The matrix H  is used to relate port variables through network 

connectivity. The ports are generic components, either 

capacitors, inductors of nonlinear devices. The term nonlinear 

is generic and includes linear functions or particular cases, 

such as short-circuits and open-circuits. It can also contain 

entire circuits. 

Although equation (1) is generic, it is assumed here for 

simplification, that the solved network has a topological 

proper-tree. The same assumption is used for the state variable 

equations. 

Equation (1) can be separated into two parts. First the state 

variable equations 
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If the inductance and capacitance matrices are included, 

equation (2) results into the classical state variable equations 
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The second part holds the nonlinear equations 
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At this stage equation (3) is discretized using trapezoidal 

integration to give 
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where t  is the integration time-step and the hatted matrices 

result from the discretization process. Equation (4) for the 

nonlinear ports is combined with equation (5) to result into 
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At the solution time-point t t , the history terms and 

independent source values are known and allow rewriting 

equation (6) as follows 
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where hist (history) terms are known variables and the matrix 

nQ  is the equivalent system matrix. 

B. The notion of State-space groups 

Equation (7) can be solved through its combination with the 

nonlinear port functions. Once the vector  
 

T

n nv iV I  is 

determined, equation (5) can follow its solution procedure for 

calculating all state variables at the time-point t t . 

Equation (1) can be also applied to a network section instead 

of the entire network. This approach can be used to create a 

group of circuit elements combined with the complete network 

MANA equations using group equation (7).  

This method is named hereinafter the state-space-nodal 

(SSN) method since it combines state-space groups with nodal 

(MANA) equations.  

SSN equations can be also derived starting from the actual 

state-space equations of a group 
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x A x B u

y C x D u
 (8) 

The column vectors x  and u  are the state variable and input 

vectors respectively. The column vector y  is the vector of 

outputs. The state-space matrices kA , kB , kC  and kD  

correspond to the kth permutation of switches and piecewise 

linear device segments. In this way the group equations can 
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contain ideal switches and nonlinear functions as in a stand-

alone state-space solution method. 

The discretization of state equations in equation (8) results 

into 

 ˆ ˆ ˆ
t t k t k t k t t   x A x B u B u  (9) 

Equation (9) and the output equations in (8) are refined as 

follows 
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The subscript character i refers to internal sources (injections) 

and the subscript n refers to external nodal injections. The 

combination of the lower row of equation (11) with equation 

(10) gives 
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It is apparent that the above equation has an independent term 

(known variables before solving for 
t tn 

y ) and can be 

written as 

 
t t hist n t tn k k n 

 y y W u  (13) 

Here the subscript hist denotes known variables for the 

solution of this equation. 

When ny  represents current injections (entering a group) 

and nu  is for node voltages, then 
histky  represents history 

current sources ( i
histk ) and 

nkW is an admittance matrix. This 

is called hereinafter a V-type SSN group and it is a Norton 

equivalent. 

When ny  represents voltages and nu  holds currents 

entering a group, then 
histky  represents history voltage 

sources ( v
histk ) and 

nkW  is an impedance matrix. This is 

referred to hereinafter as an I-type SSN group and it is a 

Thevenin equivalent. 

In general, it is possible to have both types of groups (V-

type and I-type) by rewriting equation (13) as follows 
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where the superscripts V and I denote V-type and I-type 

relations respectively. This equation is referred to as a mixed-

type group equation. It is equivalent to equation (7) by 

noticing that V-type relations are voltage ports, I-type relations 

are current ports and  
nk nW Q . 

Demonstrating that the new SSN method can be derived 

from hybrid analysis, provides new confirmation to its 

theoretical generality. To the author's best knowledge such 

theoretically demonstrations have not been previously 

presented in the literature. 

C. Interfacing the groups 

Once equation (14) is defined for a given group, it can be 

inserted into the main network equations and simultaneously 

interfaced with other group equations. This is done using 

MANA formulation for the main network. In MANA 

[5],[6],[16] 

 
 t t t tN N Nb = A x  (15) 

where the subscript N denotes MANA matrices and vectors, 

and the vector Nx  can hold both unknown voltages and 

currents. The upper (V-type) rows of equation (14) can be 

inserted directly into equation (15) by mapping the group 

nodes. The lower row (I-type) variables I

t tn
v and I

t tn
i  can 

be regrouped on the right-hand side and listed in Nx  with 

coefficients inserted in equation rows of NA . The history 

terms of (14) participate in Nb with a negative sign. 

The matrix NA  can change between solution time-points if 

the 
nkW  matrix of any group changes due to changes in 

switch positions or in segment positions for piecewise linear 

devices.  

If in the system of equations (8), the equation for y  is 

modified to include the differential of u  then 

 1  y C x D u D uk k k  (16) 

and the I-type groups can be avoided. However, the capability 

to use I-type groups remains useful since in many state-space 

solvers, such as in [1], the matrix 1D k  is not readily available. 

Equation (15) does not make any assumptions on the 

combined group equations. Any number (including zero) of 

groups can use state-space equations and any number of 

groups can use MANA (or nodal) equations. A group may 

contain an arbitrary number of devices. Moreover, MANA 

equations can contain nonlinear devices solved through an 

iterative process and independently from state-space equations. 

The capability to evacuate the solution of nonlinear devices in 

MANA groups is another important contribution in the 

proposed method. 

D. Steady-state solution 

The steady-state solution is found for initializing the time-

domain solution. For MANA groups, it is sufficient to use the 

complex version of  (15) [16] for each group. For state-space 

groups, the state variable equations (8) are solved by replacing 

the differential operator by Laplace s j , with j  being the 

complex operator and   the steady-state solution frequency in 

rad/s. Thus the complex version of equation (8) for the 

solution of state-variables becomes 

    1
  

i nk k i k nsX I A B U B U  (17) 

      
i i ii i n ini k k k i k k k nY C HB D U C HB D U  (18) 

      
n i ni n n nnn k k k i k k k nY C HB D U C HB D U  (19) 

where tilde-upper-case vectors are used to denote phasors, I  
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is the identity matrix and  
1

  ksH I A .  Equation (19) is 

first inserted into the complex version of  (15) for finding the 

nodal solution. It is followed by the solution of equations (17) 

and (18). The solution of state variables at the time-point 0t  

is found by taking the real part of the corresponding phasors. 

This solution is used to initialize history terms for the 

following time-point solution with discretized equations (10) 

and (11). 

E. Comparison with  state-space  and contributions to real-

time simulations 

The proposed method provides several advantages for 

solvers based on state-space equations. The clustering 

approach reduces the size and complexity in the automatic 

generation of state-space equations for each group. The groups 

can be solved in parallel and the number of pre-calculated 

matrix sets for switching topologies can be dramatically 

reduced. This is particularly important for real-time 

simulations. 

The groups are linked only through the nodal interfacing 

equations. The computational burden of equation (15) is 

negligible when compared to much larger group equations. 

In the SSN method, the nonlinear functions can be 

advantageously evacuated into nodal groups [15] thus allowing 

to program a simultaneous solution much more efficiently than 

through state-space equations. Due to the reduced number of 

equations in the iterative process, the SSN method has the 

potential of introducing iterative solution methodology into 

real-time solution methods. 

It is apparent from the  theoretical demonstration and the 

following validation examples, that the SSN method can be 

used to separate networks at arbitrary locations. 

III. TEST CASES 

The method proposed in this paper has been validated using 

simple and complex systems. In addition to independent 

programming, the new method has been also implemented in 

the SimPowerSystems [1] (SPS) tool for Simulink. The 

reference MANA method is the one in EMTP-RV [16]. 

A. HVDC system 

This system (Fig.  1) is composed of a 1000 MW HVDC 

link used to transmit power from a 500 kV, 5000 MVA and 60 

Hz network to a 345 kV, 10000 MVA and 50 Hz network. The 

AC networks are modeled by equivalents. The rectifier and the 

inverter are 12-pulse converters interconnected through a 

300 km distributed parameter line (includes propagation delay) 

and two 0.5 H smoothing reactors. Capacitor banks, harmonic 

filters (11th and 13th) and high-pass filters for a total of 

600 Mvars are used on each converter side. The three-winding 

transformers are Y-grounded on primary side and Y-Delta on 

the secondary side. The complete model and data are available 

in the software SimPowerSystems [1] . The only difference in 

this design is that the (300 Mvars) capacitor of the filter bank 

on the rectifier part is split into two parts, one of which is 

switched. 

For the purpose of the test, the following groups are created 

on the rectifier side: 

 Group #1: AC-source and impedance, V-type SSN group 

 Group #2: Switched capacitor, I-type SSN group 

 Group #3: Fixed filter bank, I-type SSN group 

 Group #4: Transformer, thyristor-rectifier and smoothing 

reactor, V-type SSN group. 

The inverter side is simulated using the state-space method of 

[1]. 

The test consists of the energization of the DC-link to the 

nominal current with the 300 Mvars capacitor is switched on at 

1.5 s of the simulation interval. 

The simulation results are compared to SPS in Fig.  2 to Fig.  

4 for a fixed integration time-step of 25μs . The match is very 

close and validates the SSN method. Closer examination of the 

DC current (see Fig.  3) will show small differences between 

the two simulation methods. This is normal since any small 

discrepancy in the thyristor switching methods will cause 

differences. In the current SPS code it is not possible to access 

details related to thyristor turn-on/turn-off and reproduce it 

exactly. The initial implementation based on the SSN method 

does not use specific switching tricks and the thyristor model 

is ideal. A low frequency jitter occurs in both methods. This 

jitter is due to the 25μs  sampling time-step for thyristor 

switching. A solution to this problem has been proposed in 

[19]. Fig.  5 shows the precision improvement using a time-

step of 50μs  in SSN. 

The same HVDC system can be simulated with 6 additional 

switched filter banks on the AC bus. This is achieved at a low 

computational cost since all banks are connected to the same 

node. The rectifier side Group #4 is now separated into 4 

groups (transformer, two bridges and reactor). With the 6 

additional capacitor bank groups replacing Group #1, the total 

number of groups becomes 12. The rank of NA  in (15) is 11. 

This stands for three AC bus nodes, 6 transformer secondary 

side nodes, the node connecting the upper and lower bridges 

and the left-hand side reactor node. The transmission line 

model parts are included in the inductor on the left hand-side 

and in the normal state-space group on the right-hand side. 

Different grouping strategies can be used to minimize 

memory requirements and optimize speed. 

The effect of switching banks is apparent on the rectifier 

firing angle shown in Fig.  6. 

B. Breaker test setup 

The tested system is shown in Fig.  7. It has been trimmed to 

simplify the presentation. It is used for testing fault detection 

and breaker opening under various fault conditions. It is a 

50 Hz and 225 kV system with short transmission lines 

modeled as balanced PI sections. The source impedances are 

decoupled with 1.27 R  and 63.5mHL . The PI sections 

have a capacitance of 141 10 F / km  (diagonal matrix). The 

positive-sequence resistance and inductance are 60mΩ / km  
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and 1.27mH / km  respectively, while the zero-sequence 

counterpart is three times higher. The system is lightly loaded 

with all loads having 50MWP and 0Q . The tested fault 

locations are identified as F1 to F4. Various fault types with 

fault resistance can be applied. The tested breakers are BR1 

and BR2. 

 

 
Fig.  1 12-pulse HVDC system 
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Fig.  2 DC-link current 
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Fig.  3 DC-link current, zoomed interval 

 

The system is decomposed into 5 SSN (SS1 to SS5) groups 

as identified in Fig.  7. The SS1 group is of mixed-type. There 

is a total of 9 nodal points. The simulation results for CT1 

(BR2) currents with a time-step of 25μs  for a phase-a to 

phase-b fault occurring at 100 ms at F3, are shown in Fig.  8. 

The breakers remain closed in this test and the fault disappears 

at 150 ms. The simulation results with SSN and SPS methods 

are identical. 

The system of Fig.  7 is using PI sections and it is not 

possible to decouple with propagation delays of transmission 

line models. This is an important limitation for real-time 

applications. There are 2 breakers and 4 fault devices. The 

breakers use 3 switches and the fault devices require 4 

switches for modeling various types of faults. This forces the 

pre-calculation of 222 sets of state-space solution matrices, 

which is not realizable. 

In the SSN approach, the switches are located in 

independent state-space groups. With the setup of five groups 

(see Fig.  7), the maximum number of combinations reduces to 

72  with 4 fault switches and 3 breaker switches in the groups 

SS1 and SS5. 
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Fig.  4 Rectifier AC currents, SSN (solid line) and SPS (dashed line) methods 

 
Fig.  5 DC-link current with jitter correction algorithm 

C. Real-time simulation results 

In addition to the off-line simulations presented above, the 

HVDC system of Fig.  1 and the Breaker test setup of Fig.  7 

have been tested in real-time on a target platform [20] 

comprising a single 3.2 GHz Xeon i7 Quad-core PC running 
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under RedHat Linux kernel. These tests are using the SPS 

implementation of the SSN algorithm. 
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Fig.  6 DC-link rectifier firing angle for AC filter bank energization 
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Fig.  7 Breaker test setup, single-line diagram 
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Fig.  8 CT1 current, SSN (solid line) and SPS (dashed line) methods 

 

The HVDC system was simulated with 3 cores: one core for 

the rectifier side based on the SSN method, the second core for 

the inverter side based on the state-space approach and the 

third core was used for simulating the HVDC controls. The 

worst case time-step reached 10μs  with the groups identified 

in Fig.  1. 

The Breaker test setup was simulated on a single core. The 

worst case condition gives a time-step of 21μs . 

The following table summarizes the time-step results. 

HVDC-6FB identifies the HVDC system with 6 additional 

filter banks. The worst case condition is suitable for 'hard' real-

time simulation, it is the maximum calculation time of all time-

steps. The switching events maximize processor un-caching 

effects. The measurements shown in the table below were 

performed without I/O devices. 
 

 

 

 

 

 

 

TABLE  I Hard real-time time-step 

Test case SSN time-step  

(μs ) 

CPUs used 

(power + control) 

HVDC 10 2+1 

HVDC-6FB 37 2+1 

Breaker test 21 1 

 

IV. CONCLUSION 

This paper presented new theoretical demonstrations for a 

power system simulation method based on the creation of 

group equations. The group equations can use state-space or 

MANA equations. All groups are solved simultaneously 

through a common MANA system. 

The grouping of network devices enables to modulate the 

computational burden between state-space and nodal 

equations. The paper contributes to the improvement of state-

space based off-line and real-time solvers by increasing 

computational efficiency and eliminating numerical 

limitations. 
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