
Floating-Point Engines for the FPGA-Based
Real-Time Simulation of Power Electronic Circuits

Tarek Ould Bachir, Christian Dufour, Jean-Pierre David, Jean Mahseredjian

Abstract—The real-time simulation of power electronic circuits
is challenging for several reasons. A PC-based simulation can
hardly achieve time-steps below 5-10µs: this yields a limit on
the maximal power electronic switching frequencies that can
be accurately simulated using standard methods. This paper
presents a design methodology for the hardware implementa-
tion of high-performance FPGA-based floating-point calculation
engines aimed for the real-time simulation of power electronic
systems. The power electronic circuits are modeled using the
associated discrete circuit technique. A calculation timestep of
100 ns is achieved for a boost converter, and the simulation results
are validated against the SimPowerSystems library. The paper
also discusses emerging paradigms for the FPGA-based floating-
point computation that favor optimal performance and offer near
double precision arithmetic at a minimal hardware cost.

Index Terms—power electronic circuit, companion circuit
model, real-time simulation, on-chip simulator, floating-point
arithmetic, mac, FPGA.

I. I NTRODUCTION

A S speed and density of modern high-end FPGA grow,
on-chip real-time simulation of power electronic circuits

(PECs) is gaining attractiveness and becoming a real alter-
native over pure PC-based real-time simulators. Hence, the
use of FPGA devices for the purpose of real-time simulation
is emerging as a dominant trend in the realm of hardware-
in-the-loop simulation (HILS). HILS is an industrial testing
practice in such fields as aerospace, automotive and power
systems, whose main objective is to keep the development
budget at bearable levels while running realistic tests on
the actual prototyped hardware [1], [2]. Figure 1 presents
a typical HILS configuration: A multi-core computer forms
the base computing platform for the mathematical model
and is connected to the physical hardware under test by
means of filters or power amplifiers, depending on the type
of HILS being conducted (Signal-HIL or Power-HIL). The
computational power and the fast I/O coupling capabilitiesof
the FPGAs make them an excellent choice for the extension
of the processing potential of the simulator. An FPGA affixed

The author T.O.B. gratefully acknowledges the financial support of Opal-
RT Technologies, the National Sciences and Engineering Research Council
of Canada (NSERC) and the Fonds Québécois de la Recherche sur la Nature
et les Technologies (FQRNT).

T. Ould Bachir, J.-P. David, and J. Mahseredjian are withÉcole Polytech-
nique de Montréal, Departement of Electrical Engineering, Montreal, PQ, H3T
1J4, Canada (e-mail:{tarek.ould-bachir, jpdavid, jeanm}@polymtl.ca).

C. Dufour is with Opal-RT Technologies, 1751 Richardson, suite 2525,
Montreal, PQ, H3K 1G6, Canada (e-mail:christian.dufour@opal-rt.com).

Paper submitted to the International Conference on Power Systems
Transients (IPST2011) in Delft, the Netherlands June 14-17, 2011

Fig. 1. Typical hardware-in-the-loop configuration.

to the simulator is accessible to the PC through a low-
latency high-speed serial link and serves various purposes
such as hardware ADC/DAC interfacing, function generation
(sine, resolver, PWM), and the high fidelity simulation of the
mathematical model [3]. The latter application is known as
on-chip simulation and constitutes the main aim of this paper.

On-chip simulation is an attractive option for the HILS
because of a conjunction of factors such as the very low
time-steps it can achieve and its ability to conduct a realistic
real-time simulation of rapid PECs, which are frequent in
aerospace, automotive and power systems. Indeed, modern
general purpose processors (GPP) are reported to achieve no
less than 5µs time-steps in simulating systems of moderate
size [2], and can not therefore simulate power electronic
circuits using standard methods beyond a certain limit of
switching frequencies (> 5 KHz) [4]. On the other hand,
FPGA-based simulators attain time-steps in the 100-300 ns
range [3], [4], [5], [6] and help overtake this barrier.

Nevertheless, FPGA-based on-chip simulation introduces a
number of challenges that necessitate appropriate consider-
ation. The designer must take care of every computational
detail; that is, for a given problem, an application-specific
processor (ASP) must be conceived from scratch. Thus, the
computational regularity in problem formulation is a key
feature for a hardware solver. Besides, in the context of FPGA-
based real-time simulation, where a system clock is in the
100-200 MHz range, the time budged allowed to perform all
the computations within a single time-step is limited. This
fact can lead to situations where the pre-calculation of certain
computationally-intensive parts of the mathematical model (as
matrix inversion for instance) is mandatory [3].

The representation of real numbers is a major concern for
on-chip simulation. Two main alternatives are acknowledged
in the literature. The first alternative is the fixed-point (FXP)
format, which is a machine representation for reals that uses

integers with a fixed number of digits after and before the
radix point. FPGAs offer all the basic arithmetic operators
needed for FXP arithmetic (adder, multiplier. . .), yet the FXP
format suffers from a restricted dynamic range that may be
cumbersome for the implementation of complex solvers. The
other alternative is the floating-point (FP) format, which is
a machine representation where a realx is represented by
the triplet (s, e, m) such thatx = (−1)s · 2e · m, where
s is a sign bit, e the exponent andm the mantissa. The
advantage of FP over FXP for modeling purposes is the
one-to-one correspondence of all the physical quantities in
the offline model and the real-time model. However, FP
operators are more complex, occupy more area and have higher
latencies than their FXP counterpart. Hence, while FP solves
the dynamic range problem and permits the implementation of
complex DSP algorithms, it may also bring a speed penalty.

Finally, PEC modeling is an important issue that must be
carefully considered for the implementation of our solver.The
formulation and solution of network equations fall into two
categories: the state-space and the nodal analysis formulations.

The state-space formulation depends heavily on the circuit
topology. The inclusion ofN switching devices in the network
usually implies2N different sets of equations [7]. Hence, in
the context of FPGA-based PEC real-time simulation, the pre-
calculation of these2N sets of equations requires a certain
amount of on-chip memory that limits the number of switches
to 1-10.

The nodal analysis or the modified-augmented-nodal anal-
ysis [8] found in todays Electromagnetic Transients Programs
(EMTPs) are based on the following. All circuit components
are discretized with an appropriate integration rule to form
the main network matrix equations. A discretized model is
also referred to as the companion circuit model in the litera-
ture. The classical nodal analysis uses an admittance matrix,
whereas modified-augmented-nodal is based on a more generic
A matrix which contains the admittance matrix. The main
network equations are solved using sparse matrix techniques.
If switching devices are represented using ideal switch models,
then it is needed to refactorize the network matrix for each
change of switch status. The same problem occurs if a high-
low resistance model is used for switches.

The formulation of the associated discrete method proposed
in [9], [10] has the advantage of maintaining the admittance
matrix fixed irrespective of the switching states, which makes
it a good candidate for FPGA implementation [4]. In this
paper, we propose a general framework for the effective for-
mulation of hardware FP engines for the real-time simulation
of PEC, based on the the associated discrete circuit technique.
The paper also discusses emerging paradigms for the FPGA-
based FP computation that favor optimal performance and
offer near double precision arithmetic at a minimal hardware
cost.

The remainder of this paper is organized as follows: Sec-
tion III proceeds with the presentation of the associated
discrete circuit technique used for PEC modeling. It also
details the design of the custom FP accumulator used in the
FPGA-based PEC simulating engines. Section IV presents
experimental results obtained for the FPGA-based simulation

SWITCH OFF

i
km

C

v
k

v
m

v
k

v
m

i
km

v
k

v
m

i
km

L

v
k

v
m

i
km

SWITCH ON

Fig. 2. Companion discrete circuits for the opened and the closed switch.

of a simple boost converter that help measure the effective-
ness of four different engines developed with the proposed
approach. Section V concludes this work and forecasts future
developments.

II. ON-CHIP MODELING

A. Associated discrete circuit technique for PEC modeling

The nodal equations are assembled after discretizing all
circuit devices with a numerical integration rule such as the
implicit trapezoidal method (ITM) or the backward Euler
method (BEM). Under switching conditions, the ITM can
cause numerical oscillations, thus making the BEM preferable
for fast PECs modeling, even if it is less precise.

The companion circuit of a two-pole (k, m) device is a
discrete Norton equivalent expressed in the formikm(t) =
Ihist(t − ∆t).Geq(vk(t) − vm(t)), where Ihist(t − ∆t) is a
history term,Geq is the equivalent conductance and∆t is
the simulation time-step. When BEM is used, the equivalent
conductance of the inductance (L) and capacitance (C) are
respectivelyGl = ∆t/L and Gc = C/∆t. We also have
Ihist(t − ∆t) = −ikm(t − ∆t) for the inductance and
Ihist(t − ∆t) = Gc(vk(t − ∆t) − vm(t − ∆t))) for the
capacitance. The resistance has no history term. When all
circuit components are represented by a companion circuit,
it is possible to write the system equations:

Gtvt = it (1)

where Gt is the admittance matrix (Gt is time-variant due
to the topological changes caused by the changes in switching
devices status),vt is the vector of unknown nodal voltages and
it is the vector of known current injections including history
terms. The above system is solved at each simulation time-
point after updating the vector with history current sources.
Some history terms must be computed from nodal voltages.
The associated discrete circuit technique used in [9], [10]ori-
gins from the Tableau approach [11] and solves simultaneously
the voltage and currents terms by composing a larger set of
system equations in the form:

Hxt = bt, (2)

wherext is a composite vector of nodal voltages and branch
currents, andbt is a vector of known voltage and current
sources. By modeling switching devices as a small inductance
when the switch is closed, and as a small capacitance when it
is opened, such that∆t =

√
LC, i.e. Gc = Gl (Figure 2), H

becomes time-invariant.

Pre-accumulation stage

Accumulation stage

Post-accumulation stage

Stage 2:

Stage 1:

Stage 3:

conv. saf to sfp

8

a

Unpack

s e m

32

signed

2481

258

b

Unpack

s e m

signed

24/3481

25/358

×

 left-shift

3

49/598

8 49/59

 left-shift

3

8 wm-31-log2(N)

round

Option 1:

No rounding

Wide mantissa

Large bias

Option 2:

Rounding applied

Narrow mantissa

Small bias

km

m >> k ⋅ 2l

km

m >> k ⋅ 2l

3

process

exponents

ki kf

mi

mf

ei

ef

wm kfki

3

wm

wm wm

wm

3 3

we we 3

accumulate

3

1

ei

init

mi

ef mf

result

127
+ +
−

wm

wmwm

inita

32

b

mieimiei

multiply &

conv. to saf

ei mi

ef mf

ef mf

3 wm

wsfp

wsfp

wsfp

+ +

(b)(a) (c)

Fig. 3. Main blocs for the floating-point accumulator with design alternatives: (a) Main stages for the FP accumulator; (b) Pre-accumulation stage with the
different options considered in the paper; (c) Accumulation stage datapath and control unit.

B. Custom floating-point MAC

A key observation in developing FP calculation engines for
the simulation of PECs is the problem formulation in terms
of a time-constrained matrix-vector multiplication, which can
be efficiently solved by a structure of parallel multiply-
accumulators (MACs). However, when considered in the
framework of FP arithmetic, such an architecture presents
a number of challenges: 1) An FP accumulator is more
difficult to implement than its FXP counterpart because of
the fundamentally more complex architecture of FP adders;
2) Commercially available FP adders may be considered to
perform the accumulation function [3], [6] — however, the
introduction of cumulative latencies has a bad impact on the
overall simulation time-step; 3) The iterative variables must be
fed-back into the solver as fast as possible in order to minimize
dead-time cycles during which the MACs remain idle before
starting a new iteration.

We propose a solution to this problem by designing a
custom FP MAC using a so-called high-radix carry save
(HRCS) format for the internal mantissa and by using the self-
alignment technique (SAT) for the accumulation function [12].
Our approach guarantees ultra-low latencies, which is a fun-
damental criteria to achieve short calculation time-steps.

The SAT is a powerful algorithm for the accumulation of FP
addends that minimizes the interaction between a new addend
and the running sum by shifting its mantissa with respect to
a common boundary to all summands rather than using the
difference between the exponents of the incoming operand
and that of the running sum. Hence, all the necessary shifts
of the mantissa are performed outside the critical path of the
accumulation loop. Figure 3.a presents the main stages of the
MAC for single precision operands. At the first stage (Fig-
ure 3.b), the FP inputsa andb are unpacked, their exponents
are added (the bias is substracted from the result) and their
mantissas converted to two’s complement and multiplied. The
resulting mantissa contains additional least significant bits that
can be discarded after rounding (truncation) to insure a higher
precision. We show in Section III that the truncation yields
area savings with a minor precision loss. At the accumulation

Exponent reduction

0 1010 1100 1000 0000 0000 000010000010

130 1.34765625

10000010 1.010 1100 1000 0000 0000 0000

+3 1.34765625

100 00010

100

0 1010 1100 1000 0000 0000 0000

010 1011 0010 0000 0000 0000 0000

+4 0x02B20000SAF(5, 150)

Mantissa extension

Biased mantissa

Signed exponent

shift_left(2)

Binary

Unpacked

S
in
g
le
 p
re
c
is
io
n

fl
o
a
ti
n
g
-p
o
in
t

F
lo
a
ti
n
g
-p
o
in
t

 t
o
 S
A
F
(5
,
1
5
0
)

0 , 10000010 , 010 1100 1000 0000 0000 0000IEEE standard
sign exponent significand

Fig. 4. The conversion of an SFP real number to SAF(5,150).

loop stage, the incoming operands are accumulated through
out the accumulation cycles. Finally, the post-accumulation
stage converts the result to a standard floating-point format.

In order to clarify the mechanisms by which the MAC is
operated, we define the self-alignment format (SAF) with two
associated integral parameters:l, the amount of least signifi-
cant bits discarded from the FP exponent, andb, the bias used
to adjust the dynamic range of the FP value. A FP numberxfp

is represented in SAF(l, b) by a pair of integral reduced expo-
nent and integral extended mantissa(e, m): xfp = m · 22le−b.
For instance, ifxfp = 10.78125 is given in the standard single
precision floating-point (SFP) format, we may representxfp in
SAF(5, 150) as illustrates Figure 4. The binary encoding ofxfp

imposes the insertion of a sign bit and the hidden1 to form the
two’s complement standard mantissa. The standard exponent
is divided in two parts,e[7:5] (which forms the new exponent
for the SAF(5, 150) representation) ande[4:0], which is used
to shift the two’s complement standard mantissa to the left.
The mantissa is then sign-extended up towm = 64 bits. We
thus getxfp = (4, 0x0000 0000 02B2 0000)saf(5, 150).

It is noteworthy that we arbitrarily set for this example
wm = 64 and l = 5 (2l = 32). On the other hand, we
choseb = 23 + 127 = 150 because23 is the number of

mem v

mem m

mem v

mem m

mem v

mem m

mem v

mem m

mem v

mem m

mem v

mem m

Pre-acc

#1

Acc

#k-1

Pre-acc

#2

Acc

#k-2

Pre-acc

#n_k

Acc

#k-n

Pre-acc

#1

Pre-acc

#2

Acc

#2

Pre-acc

#n_1

Acc

#n_1

Acc

#1

Post-acc

#1

mem v

mem m

mem v

mem m

mem v

mem m

Control Unit

Inputs

Outputs

MC1

MCk

Fig. 5. Calculation engine for the simulation of PECS.

fractional bits in SFP and127 is the standard SFP bias.
The accumulation stage of the MAC adds the feed back
operand and the incoming operand by using the SAT addition
algorithm (see Figure 3.c): Ifxfp = (ex, mx)saf(l, b) andyfp =
(ey, my)saf(l, b), then rfp = xfp + yfp = (er, mr)saf(l, b), is
given byer = max(ex, ey) andmr = shift right(mx, kx·2l)+
shift right(my, ky · 2l), with kx = er − ex ky = er − ey. The
correctness of this algorithm is guaranteed by the widenessof
the mantissam that is expected to be at least two timeswstd

m

bits wide, wherewstd
m is standard FP mantissa width (wstd

m = 24
in single precision arithmetic).

C. Solver

Figure 5 presents the proposed calculation engine archi-
tecture for the simulation of PECS. The principal constituent
blocks of the solver are thek MAC clusters (MC). Each MCi
(1 ≤ i ≤ k) disposes of ni MACs. These MACs are con-
nected to dedicated memory elements (registers/RAM/ROM)
to alleviate the routing constraints and maximize throughput.
The memory elements store either the iterative variables in
mem v (we clarify what the iterative variables are in Section
III) and the inverted values from matrix (H−1) in mem m.
In order to reduce the area occupation, the final stage of the
MACs (Figure 3.a), i.e. the SAT to SFP conversion stage, is
shared among ni MACs in each MCi , since it is active only
at the end of the accumulation cycles. Finally, the control unit
is in charge of the computation scheduling, input and output
registering and updating the state of the switches, the latter
explains the feedback path from the operative blocs (MAC
clusters) to the control unit.

The minimal time-step for a MAC-based calculation engine
(in terms of clock cycles) is given by the sum of the latency of
the MAC (lmac) and the number of columns inH−1 (q). The
actual latency of the solver depends onlmac, the number of
rows (p) and columns (q) in H−1, and the solver’s processing
power — expressed in ni (1 ≤ i ≤ k) and k. The values of ni
(1 ≤ i ≤ k) and k are determined by a tradeoff between the
calculation time-step that is sought and the size of the FPGA.

E

L

C
1

R
1

C
2 R

2
c

GC1 jC1

GR1

E

iE i1 GL

jL

GS1 j
S1

GS2

jS2

i 2
i4 i 3

GC2
jC2 GR2

vE

V1

v 2 v3

(a)

(b)

Fig. 6. Boost converter: (a) Original circuit; (b) Companion discrete model.

It is worth noting that Figure 3.b suggests two options for
the conversion of the FP product ofa andb into SAT(5, 150),
namely with or without rounding. Section III shows that the
rounding option offers considerable area saving at the costof a
slight precision penalty. Moreover, we propose to considerably
improve the precision of the computation by exploiting spare
hardware. Indeed, high-end FPGAs from Xilinx (latest Virtex
devices) offer DSP blocs embedding asymmetric multipliers
of (25× 18) [13]. The25× 25 signed multiplication used for
the SFP multiplier consumes two DSP blocks. However, 10
bits remain unused since the combination of two DSP blocks

Fig. 7. Load voltage: Model against SimPowerSystem.

forms a25×35 signed multiplier. We thus propose to represent
the iterative variables in a non-standard SFP format: we add
the 10 spare bits to the mantissa.

III. R ESULTS

In this section, we propose to conduct a study on four differ-
ent FPGA implementations calculation engines. We consider
for that purpose the simple boost converter of Figure 6.a.
This circuit is fairly comparable to the example proposed
in [9], except for the shunt RC-branche. The associated
discrete circuit technique models the boost circuit by the
companion circuit of Figure 6.b for which we defined four
nodal voltages (vE is known) and four branch currents. The
network solutionHxn+1 = bn+1 for the boost converter is
given by Equation (3). The iteration for each calculation time-
point consists in repeatedly solving forbn+1 then solving for
xn+1 = H−1bn+1. BecauseH is constant, the solver main-
tains the pre-calculated matrixH−1 rather thanH . Moreover,
since the first three terms inb are 0, we may considerH−1 to
be a9× 6 matrix. Finally, from a data-flow point of view, the
output’s of the solver are selected fromx, while the iterative
variables are in b.

The history term of the switches are solved by:

jn+1
s =

{

−in if the switch is closed
Gsv

n if the switch is opened
(4)

! !"!!# !"!$!"!$# !"!% !"!%# !"!&
$!

!'

$!
!#

$!
!(

$!
!&

$!
!%

$!
!$

)*+,-./0

1
,
23
4*
5
,
-,
66
7
6

-

-

8999-:#(-;<=

>,/*?@-.$0

>,/*?@-.%0

>,/*?@-.&0

>,/*?@-.(0

IEEE 754 SFP

Design 2
Design 4

Design 3

Fig. 8. Relative error for the four designs against double precision
arithmetic. Relative error for standard single-precisioncomputation is given
as a reference.

where Gs is the conductance associated to the switch. The
updating rule for the switch state depends on the nature of
the device. For the IGBT-diode pair, the current state of the
switch is given by the boolean equation:

sn+1 = cn+1 + sn(in ≤ 0) + sn(vn < 0) (5)

wherecn+1 is the current command at the IGBT gate,sn is
the switch state from the previous iteration,vn and in are
respectively the last computed voltage and current associated
to the switch. On the other hand, the updating rule for the
diode is given by the boolean equation:

sn+1 = sn(in ≥ 0) + sn(vn ≥ 0) (6)

These state equations are computed by the control unit of
Figure 5 because the controller has to decide whetherjn+1

s

has to be updated to−in or Gsv
n.

We implemented four different solvers for the considered
boost problem:

• Design (1); The rounding (truncation) is performed prior
to the accumulation (wm = 64) and we use the standard
SFP for the iterative variables (wstd

m = 24);
• Design (2); The rounding (truncation) is not performed

prior to the accumulation (wm = 96) and we use the
standard SFP for the iterative variables (wstd

m = 24);





























0 0 0 0 1 −1 0 0 −1
0 0 0 0 0 0 −1 −1 1

Gr1
−Gr1

0 0 0 −1 0 0 0
1 0 0 0 0 0 0 0 0
0 Gc1

0 0 0 −1 0 0 0
0 0 0 Gr2

+ Gc2
0 0 0 −1 0

Gl 0 −Gl 0 0 0 0 0 −1
0 0 Gs1

0 0 0 −1 0 0
0 0 Gs2

−Gs2
0 0 0 −1 0

























































vn+1
E

vn+1
1

vn+1
2

vn+1
3

in+1
E

in+1
1

in+1
2

in+1
3

in+1
4





























=





























0
0
0
E

Gc1
vn
1

Gc2
vn
3

−in4
jn+1
s1

jn+1
s2





























(3)

TABLE I
IMPLEMENTATION RESULTS OBTAINED FOR THEX ILINX V IRTEX 5 FPGA (XC5VSX50T).

Metric design (1) design (2) design (3) design (4) available

MAC operator (13 clock cycles latency)

Number of Slices 372 (5 %) 617 (8 %) 685 (8 %) 464 (6 %) 8,160
Number of DSP blocks 2 (1 %) 2 (1 %) 2 (1 %) 2 (1 %) 288
Minimal combinatorial latency 4.792 ns 4.729 ns 4.938 ns 4.949 ns N/A
Maximal clock frequency 208.68 MHz 211.46 MHz 202.51 MHz 202.06 MHz N/A

Solver for the boost converter (100 ns time-step)

Number of Slices 2,657 (33 %) 4,509 (55 %) 4,397 (54 %) 3,222 (39 %) 8,160
Number of DSP blocks 16 (6 %) 16 (6 %) 16 (6 %) 16 (6 %) 288
Number of BRAMs 7 (5 %) 7 (5 %) 7 (5 %) 7 (5 %) 132
Minimal combinatorial latency 4.969 ns 4.979 ns 4.973 ns 4.973 ns N/A
Maximal clock frequency 201.25 MHz 200.84 MHz 201.09 MHz 201.09 MHz N/A
Actual latency 5.000 ns 5.000 ns 5.000 ns 5.000 ns N/A

• Design (3); The rounding (truncation) is not performed
prior to the accumulation (wm = 96) and we do not use
the standard SFP for the iterative variables (wstd

m = 34);
• Design (4); The rounding (truncation) is performed prior

to the accumulation (wm = 64) and we use the standard
SFP for the iterative variables (wstd

m = 34);

The four solvers necessitate 20 clock cycles to complete
one computation cycle: 1 clock cycle is needed to address the
registers, 6 clock cycles are needed to feed the MACs with
the elements from given rows inH−1 (H−1 is p×q = 9×6),
13 additional clock cycles are needed to pass through the
MACs (lmac = 13). There is no need for other arithmetic
units besides the MACs because the solver is dedicated to-
wards the computation of the history terms (present inbn)
mainly. As one may observe, for a givenbn, one may first
computexn = H−1bn to estimatebn+1 for the next time-
point. However, there is no real need forxn to compute
bn+1: for instanceGc1

vn+1
1 (the history term for C1) can be

obtained fromGc1
(H−1[2, :]bn) = (Gc1

H−1[2, :])bn. Hence,
we should storeGc1

H−1[2, :] rather thanH−1[2, :] in mem m.
From a more general perspective, we state that only linear
combinations of rows fromH−1 are to be pre-calculated and
stored. The history terms inbn are then used as iterative
variables. It should be noted that the history termjs for each
switch necessitates the computation of two distinct history
terms (−il and Gcvs). Hence, Equations 5 and 6 should be
modified accordingly to exploit the available history terms
rather than the current and voltage of the considered switch.
Finally, it is noteworthy to mention that other variables may be
computed during dead cycles of the MACs (the MACs are not
processing any data during at least 14 cycles) as, for instance,
the outputs of the solver.

The four designs were developed using the RT-XSG toolkit
for MATLAB/Simulink from Opal-RT. Each solver disposes
of four MCs (k = 4) with two MACs each (n1 = n2 = 2).
With 8 MACs at hand, the solvers are capable of producing 16
different outputs within the 20 clock cycles budget. In our im-
plementation, the four solvers were computing values fromxn

for the outside world. The designs targeted an HIL simulator
from Opal-RT, equipped with an ML-506 development board
powered by the Virtex 5 XC5VSX50T FPGA from Xilinx. We
used an Intel Core 2 Duo based Windows PC with 3 Go of
RAM to synthesize and implement our architectures with the
version 10.1 of the ISE software from Xilinx. The synthesizer
was configured to automatically choose to use DSP blocks or
not, and to balance the optimization between speed and area
occupation. For each design, we imposed a timing constraint
of 5 ns latency for the combinatorial logic. Table I outlinesthe
area occupation and speed performance of the aforementioned
designs. We clearly see that all the designs successfully met
the timing constraint (5 ns) thanks to the HRCS format used
for the internal mantissa, thus achieving the target calculation
time-step of 100 ns.

The models were successfully validated against off-line
SimPowerSystems models as illustrated in Figure 7. Figure 8
shows that our solvers perform better than what is usually
expected from standard SFP arithmetic thanks to the use of
a custom operator. We measured the significant impact on
area occupation (+65%) of avoiding truncation after the FP
multiplication at the input stage of the MAC. However, we
demonstrated that the rounding (truncation) operated after
multiplication of the mantissas has less impact on the overall
precision of the computation than the rounding performed at
the output of the MAC (needed to match the standard SFP
binary encoding). This result is obvious from Figure 8 which
shows that the use of a non-standard floating-point format for
the computation of the iterative variables enables very precise
calculations, comparable to double precision arithmetic with a
relative error in the10−4–10−5 range, This solution also leads
to important area savings if rounding is performed at the input
stage of the MAC (after multiplication) with a minor impact
on precision loss.

IV. CONCLUSION

A new framework for the implementation of hardware
floating-point engines has been presented and proved effective

for FPGA-based real-time simulation of PECs. The engines
exploit custom floating-point MACs. Proper assessment of
insightful trade offs between area and precision was proposed
for such MACs. The framework guarantees very low latencies
and high clock frequencies thanks to the HRCS format and the
self-alignment technique. Time-steps well below 1 microsec-
ond are achievable, as demonstrated by the successful FPGA-
based implementations of a boost converter. Future work will
consider more complex power electronic systems and the
implementation of double precision floating-point calculation
engines.

REFERENCES

[1] B. Lu, X. Wu, H. Figueroa, and A. Monti, “A low-cost real-time
hardware-in-the-loop testing approach of power electronics controls,”
IEEE Transactions on Industrial Electronics, vol. 54, no. 2, pp. 919–
931, April 2007.

[2] J. Mahseredjian, V. Dinavahi, and J. Martinez, “Simulation tools for
electromagnetic transients in power systems: Overview andchallenges,”
IEEE Transactions on Power Delivery, vol. 24, no. 3, pp. 1657–1669,
July 2009.

[3] T. Ould Bachir, C. Dufour, J.-P. David, and J. Bélanger,“Effective
FPGA-based electric motor modeling with floating-point cores,” in 36th
Annual Conference of IEEE Industrial Electronics Society (IECON
2010), Arizona, USA, Nov. 2010, pp. 829–834.

[4] M. Matar and R. Iravani, “FPGA implementation of the power electronic
converter model for real-time simulation of electromagnetic transients,”
IEEE Transactions on Power Delivery, vol. 25, no. 2, pp. 852–860, april
2010.

[5] C. Dufour, H. Blanchette, and J. Belanger, “Very-high speed control of
an FPGA-based finite-element-analysis permanent magnet synchronous
virtual motor drive system,” in34th Annual Conference of IEEE Indus-
trial Electronics Society (IECON 2008), Nov. 2008, pp. 2411–2416.

[6] J. Pimentel and H. Le-huy, “Hardware emulation for real-time power
system simulation,” inIEEE International Symposium on Industrial
Electronics, vol. 2, July 2006, pp. 1560–1565.

[7] B. De Kelper, H. Blanchette, and L.-A. Dessaint, “Switching time model
updating for the real-time simulation of power-electroniccircuits and
motor drives,”IEEE Transactions on Energy Conversion, vol. 20, no. 1,
pp. 181–186, march 2005.

[8] J. Mahseredjian and F. Alvarado, “Creating an electromagnetic transients
program in matlab: Matemtp,”IEEE Transactions on Power Delivery,
vol. 12, no. 1, pp. 380–388, jan 1997.

[9] P. Pejovic and D. Maksimovic, “A method for fast time-domain
simulation of networks with switches,”IEEE Transactions on Power
Electronics, vol. 9, no. 4, pp. 449–456, jul 1994.

[10] T. Maguire and J. Giesbrecht, “Small time-step (<2us) VSC model for
the real time digital simulator,” inIPST, June 2005.

[11] G. Hachtel, R. Brayton, and F. Gustavson, “The sparse tableau approach
to network analysis and design,”Circuit Theory, IEEE Transactions on,
vol. 18, no. 1, pp. 101 – 113, Jan. 1971.

[12] T. Ould Bachir and J.-P. David, “Performing floating-point accumula-
tion on a modern FPGA in single and double precision,” inInterna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM 2010), 2-4 2010, pp. 1050–108.

[13] Xilinx, UG192 v5.1: Virtex-5 FPGA User Guide, 2009.

