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 Abstract-- We present a method for the evaluation of the sea 

return impedance term to be employed in the construction of the 

per-unit-length parameter matrix which is required to describe 

submarine cables in Electromagnetic Transient software. 

We evaluate the sea return impedance using the quasi Monte 

Carlo technique, and an adapted sequence of pseudo-random 

variables to get a faster convergence. In the calculation of the 

impedance integral we employ a change of variable in order to 

reduce its oscillatory behavior and allow it to converge.   

We also introduce the stochastic collocation technique in 

order to analyze the impact of uncertainties on the knowledge of 

the input parameters. This technique is well adapted to 

numerical calculations; it gives results similar to those obtained 

with a standard Monte Carlo method, but requires a minor 

number of computations, some units, instead of  the thousands 

needed with the Monte Carlo method; this is an advantage 

because the computation time with the latter method would be 

too long. Furthermore this technique is non intrusive and thus 

does not necessitate a modification of the function. 

We show that for the evaluation of the sea return impedance a 

certain inaccuracy in the knowledge of the cables laying 

configuration and of the conductivities of the soil can be tolerated 

in some cases. 

I.  INTRODUCTION 

The computation of electromagnetic transients with the aid 

of EMT-like software programs [1], requires accurate models 

for the propagation along lines and cables. 

When the Transmission Line Approach is used, the ground 

conductor normally acts as the reference. As it is widely 

known, it is necessary in transient simulations to represent 

correctly the soil, as this has a strong impact on the 

propagation of current/voltage waveforms, even more so in 

underground cables. 

In some cases it is sufficient to consider the soil as 

consisting of a single layer, so that, for underground cables, 

Pollaczek integral [2] and its approximated solutions [3] [4] 

[5] [6] can be utilized. 
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In the case of submarine cables, though, the difference in 

the conductivity between the sea and the seabed is so big that 

the single layer approximation is not acceptable and a two-

layer model needs to be used. Tsiamitros et Al. [7] and Lucca 

[8] propose a method, which fulfills this condition, although it 

is based on the calculation of a highly oscillatory integral, 

difficult to evaluate numerically. In this paper we show how to 

use for the calculation of that integral the quasi Monte Carlo 

method [9] which offers the advantage to be programmed 

easily in an EMT-like software program.  

II.  THE SEA RETURN IMPEDANCE  

A.  Description of the integral 

For describing the usually called ground (or earth) return 

impedance we shall employ here the term “sea return 

impedance”. 

The following situation is assumed: two cables are laid at 

the interface sea/seabed at a depth of h, their mutual distance 

is x12, their external radius R, the electromagnetic parameters 

μi, εi, σi (magnetic permeability, electric permittivity and 

conductivity) of each layer are as shown in the figure 1 below. 

We use the formulation described in [7] and solved in [8] 

for a two-layer soil. The integral derived for the per unit 

length (p.u.l.) mutual impedance is the following:  
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We have shown here a configuration (Fig.1) that is of 

interest for submarine cables, but the solution described in the 

next section could be also applied to different soil 

configurations. 
 



 
Fig. 1 - The two-layered “ground” formed by the sea water and the seabed 
 

 

B.  The quasi Monte Carlo as a solution method 

The quasi Monte Carlo method, described accurately in [9], 

starts from the following equation in order to solve an integral: 
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where N is a large integer number and 
n are independent 

pseudo-random variables. 

The use of pseudo-random variables, and more specifically 

here the van der Corput suite [10], allows for a faster 

convergence of the numerical sum. That said, we need to 

transform (1) into an integral bounded between 0 and 1; in [9] 

the integral was split in two integrals and the second, bound 

between 1 and +∞, was transformed using the transformation 

u=1/v. 

Due to the different oscillating nature of the sea return 

integral we chose instead  

1
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(4) 

This different change of variable acts as a filter on integral 

(1) allowing for the convergence of (3). 

The mutual impedance is then obtained numerically as:
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The results given by this formula have been successfully 

compared with those obtained using the commercial software 

MathCad [11]. 

Furthermore, if the integral is calculated using the same 

electrical parameters for sea and seabed layers, the results 

obtained well agree with the Pollaczek formulation solved as 

in [9]. 

The two-layer formulation, and for that matter the present 

work, derive their justification from the fact that, even when 

the two layers have very different conductivities (as is the case 

of sea water and soil), the classical Pollaczek formulation 

which ignores the lesser conductive layer, when compared 

with the one proposed here, results in considerable errors in 

the evaluation of both components of the overall impedance, 

as can be seen from the example in Fig.2.

 
Fig. 2 – Relative differences resulting in the configuration as in Fig.1 with 

h=25 m and x12=1 m from the use of Pollaczek integral with σ =3 S/m, when 
compared with the two-layer formulation with σ1=3 S/m and σ2= 0.005 S/m. 

III.  THE STOCHASTIC COLLOCATION METHOD 

In order to take into account the variability of the 

configuration parameters, we propose to use the stochastic 

collocation (SC) method, previously validated on 

electromagnetism problems [12] [13]. The choice of this 

method to solve this problem is due to the following reasons. 

First, it is non intrusive whence the advantage to use 

deterministic software. Further, as we shall see later in the 

paper, it is rather simple and rapid providing good results 

when compared with the Monte Carlo one [14].  The aim here 

is to determine the first statistical moments (average and 

standard deviation) of sea return impedance. In this section, 

the general SC method is detailed for a single random variable 

but the formalism can be extended to the case of multiple 

random variables.  

A.  Case of a single random variable 

The uncertain depth h of the cable can be considered, for 

instance, as the following function of a random variable (RV): 

 0 (1 )h h ax 
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where  
0h  is the central (mean) value of the depth, x 

corresponds to a RV following a given statistical law (for 

example, an uniform law on [-1,1]) and a represents a 

parameter that fixes the randomness intensity.  0

hh D where 

Dh is the domain of definition of h. 

The originality of the SC method lays in the choice of the 

polynomial approximation used to represent an observable Z 

(in our case, the sea return impedance) which is a function of 

the considered RV. 

First, for a given 
0h , the function 

0
( ; )x Z h x is developed on 

a Lagrange polynomial basis of order n 
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where the expression of the Lagrange polynomial is given by 
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It is straightforward to show that we have 

 0 0
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The key of the SC method relies on the selection of the 

collocation points xi that define the Lagrange polynomial. 

These points are chosen to match those of the Gauss 

quadrature integration rule: 
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where p(x) is the probability density function of the RV x. 

The positive real numbers 
i  are called integration weights. 

By definition, the mean value of Z is given by:
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By replacing  0 ,  Z h x with its polynomial approximation 

(7) 

 

0

0

0

0

( ) ( ) ( )

( ) ( ) ( ) .

h

h

n

i i

iD

n

i i

i D

meanZ h L x p x dx

h L x p x dx

Z

Z







 
 

 (12) 

Using (10) and the well-known property of the Lagrange 

polynomial,  i j ijL x  ,  being the Kronecker symbol, we 

can show  
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 therefore the mean value is simply given by 
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In a similar way, we can obtain the variance

 
2 0

0

2
var( ) ( ) .

n

i i

i

meanZ h ZZ


 
 

 (15) 

The application of the SC method consists in evaluating the 

deterministic problem (given here by equation 5) for each one 

of the collocation points. Since no theoretical results exist, the 

convergence of the method is obtained by comparing the 

results obtained by increasing the number of collocation 

points. In general, as we shall see in the section III, a few 

number of collocation points is needed to evaluate the mean 

and variance of the output and this makes the SC  very 

interesting as compared to the classic Monte Carlo method. 

 
 

B.  Case of multiple random variables 

The previous technique can be generalized to the case of 

multiple RVs. As an illustration, we consider two RVs 

associated with the parameters 1 and 2 (conductivity values 

of the sea water and seabed layers) of the function Z. We 

adopt the same notations  
0
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In the previous expressions, if the same parameter a has 

been chosen for the two RVs, it is possible to introduce two 

different parameter values.  

The function   0 0

1 2, ( ; , ),x y Z x y   is developed on a 

Lagrange polynomial basis 
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In the same way as previously, we can show that the mean 

and variance of Z can be written as: 
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It is very important to point out that the SC method is non-

intrusive (for one or several RVs) and does not require 

modifications of the deterministic solver used (analytic, 

numerical homemade or commercial). Moreover, the proposed 

method takes into account in a natural process the probability 

law of the RV. 

IV.  APPLICATION OF THE METHOD TO THE SEA RETURN 

IMPEDANCE 

In order to show how the variation of the input parameters 

of the formula of the sea-return impedance impacts on its 

values we have considered separately two variations: 
- The variation of the size of the first layer (or the laying 

depth of the cables). 

- The variation of the conductivity  of both sea and seabed 

layers (case of two RVs). 

The standard deviation is defined from the previous formulas 

as 

( ) var( )stdev Z Z          (22) 

Table 1 gives the values of the collocation points and of the 

weights when the RV h follows a uniform law. 
 

Table 1 - Collocation points and weights used for the 1 RV case 

xi (depth h) ωi 

13,38 0,2778 

25 0,4445 

36,61 0,2778 

 

The convergence of the method is such that only 3 

collocation points have been employed here. With an increase 

of their number (for instance using 5 points) the results do not 

vary.  



 
 Fig. 3 – Mean mutual sea return resistance, when depth h has 66% 

randomness 

 
Fig. 4 – Mean mutual sea return reactance, when depth h has 66% 

randomness 

 
 

Table 2 - Collocation points and weights used for the 2 RV case 

xi (σ1) yj (σ2) ωi* ωj 

1,450 0,0550 0,1234 

1,450 0,0201 0,0771 

1,450 0,0898 0,0771 

3,000   0,0201 0,1234 

3,000  0,0550 0,1975 

3,000   0,0898 0,1234 

4,549 0,0201 0,0771 

4,549 0,0550 0,1234 

4,549 0,0898 0,0771 

 

 

In the case of two RVs again 3 points for each one of the 

variables were sufficient, but as can be seen from equations 

(20-21) 9 computations were necessary. It is therefore evident 

that this technique can be only applied when dealing with a 

limited number of RVs.  

 

 
Fig. 5 – Mean mutual sea return resistance, when conductivities have 66% 

and 82 % randomness respectively 

 
Fig. 6 – Mean mutual sea return resistance, when conductivities have 66% 

and 82 % randomness respectively 

 

It is reasonable to ascertain that, since this variation is 

limited, one can use the mean of the value of the impedance as 

the entry value for the cable model, even when relatively 

significant uncertainties are present in the input parameters. 

And, since cables laid on the sea bed have variable laying 

depths, it is of great interest that the stochastic collocation 

permits to calculate the mean of the impedance very simply. 
 

V.  CONCLUSIONS 

In this article we have presented a method for the 

calculation of the sea-return impedance of submarine cables. 

A precise integral accounting for the different electrical 

characteristics of the two layers (sea and seabed) is solved 

using a quasi Monte Carlo method. This method is numerical, 

and can be easily implemented and included in cable 

parameters calculations. 

The results it gives have been compared with those obtained 

with a commercial software. The main advantage of proposing 

a closed form solution to the integral is that this can be 

included in deterministic calculations of per-unit-length 

parameters. 
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We have also presented the stochastic collocation method, 

a non intrusive technique that allows evaluating the mean and 

variance of a function in a way similar to the Monte Carlo 

method and requires only very few computations instead of 

thousands. 

Applying the stochastic collocation to the evaluation of the 

sea return impedance we have then shown how the variation 

of the input parameters (conductivities and cables’ laying 

depth) affects the mean value of the impedance.  
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