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 Abstract—This paper reports new developments in applying 

symmetry principles to power systems. At first, it defines AC 

frequency associated with a rotation phase angle that will be 

achieved by combining spiral vector theory with group theory. 

Then, it first proposes the gauge voltage group and the gauge 

difference voltage group, next construct these two group’s vector 

multiplication tables and real number multiplication tables, next 

discovers some invariants that are the frequency coefficients, the 

gauge voltage, and the gauge difference voltage, finally obtains 

AC frequency and the amplitude respectively. In addition, it 

proposes measuring the DC component of input signals with the 

gauge voltage group. Further, it proposes three approaches to 

reduce the influence of harmonic distortion. At last, it presents 

results from a numerical simulation and a field test. In general, it 

proposes an effective method for PMU. 
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I.  INTRODUCTION 

igh-speed and high-precision tracking of AC frequency is 

required urgently for developing smart grid. Here AC 

frequency means real-time frequency of a power system. 

Commonly, the signal process of AC frequency is time-

consuming and PMU is expensive. However, spiral vector 

theory that using spiral vector variables that are rotating 

counterclockwise in the complex plane was proposed by Dr. 

Yamamura [1]. In consequence of this, we had developed 

spiral vector methods for power systems [2]-[11]. On the other 

hand, since A. Einstein introduced symmetry into physics and 

developed relativity theory, symmetry principles had been 

applied not only to quantum mechanics, but also to quantum 

field theory, and all of them obtained great success [12]-[13]. 

Therefore, after happened to discover that spiral vectors have 

symmetry properties, we had started to develop symmetry 

principles for power systems by combing spiral vector theory 

with group theory [14]-[19]. This paper reports new 

developments and it is organized as follows: Section II shows 

defining AC frequency with rotation phase angle; section III 

proposes the gauge voltage group; section VI proposes the 

gauge difference voltage group; section V calculates the DC 
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component; section VI deals with harmonic distortion; section 

VII implements numerical simulation; section VIII conducts 

field test, and last section IX is the conclusions. 

II.  DEFINING AC FREQUENCY WITH ROTATION PHASE ANGLE 

As a matter of fact, according to IEEE Std. [20], for a 

sinusoidal signal as 

)](cos[)( tXtx m ψ=                                (1) 

where Xm is the amplitude, )(tψ is the synchrophasor 

associated with the rated frequency reference, the frequency is 

defined as 
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And the rate of change of frequency estimation is defined as 
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The above definition treats every frequency all the same 

and AC frequency is limited to one-dimensional space. Then, 

one has to utilize DFT or similar methods to extract AC 

frequency from input signals [21]. On the contrary, we tried to 

discover new definition focusing on AC frequency and to 

abandon reference frames due to a power system can’t operate 

in the point of the rated frequency. Referring to Fig. 1 in next 

page, we introduce a rotation phase angle to define AC 

frequency as [19] 
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where f(t) is AC frequency and fS is the gauge sampling 

frequency. Then, AC frequency can be obtained as 
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where T is the gauge sampling period and is expressed as 
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1
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Next we define the rate change of frequency estimation as 
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where n is any integer. For focusing AC frequency and 

reducing the influence of harmonic distortion, the rotation 

phase angle should be set to a large value (e.g., larger than 90 

H 



 2 

degrees) by choosing suitable gauge sampling frequency. 

Then, AC frequency definition is extended to a two-

dimensional space. Next we start symmetry processing. 

III.  DEFINING AND USING GAUGE VOLTAGE GROUP 

Here we define three voltage vectors in the complex plane 

in Fig. 1 as the gauge voltage group. Then three voltage 

vectors are expressed as [19] 
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where α is the rotation phase angle, T is the gauge sampling 

period, V is the amplitude, ω is the angular velocity of the 

voltage vectors and it is expressed as 

fπω 2=                                      (9) 

where f is AC frequency. 

Consider the group rotating through some degrees in the 

complex plane, the structure of the group will not change if 

AC frequency does not change in the rotation time. It is the 

rotation invariance according to group theory, thus we can 

discover invariants of the group. In Fig. 1, we find that v1(t) 

and v1(t-2T) are symmetrical about x axis with α, then these 

two elements, plus the middle element v1(t-T) will be used to 

calculate the frequency coefficient invariant. 

In what follows, we construct the vector multiplication table 

of the gauge voltage group that is shown in Table I. 

Substituting (8) into the elements of Table I, we obtain 
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The above elements consist of the phase space of the gauge 

voltage group that is illustrated in Fig. 2. Thus we find that 

v1
2
(t-T) and v1(t)v1(t-2T) equal to each other, this pair will be 

used to calculate the gauge voltage invariant. 

Moreover, three instantaneous voltages of (8) are expressed 

as 
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With the above data, we construct the real number 

multiplication table of the gauge group that is shown in Table 

II. Substituting (11) into the elements of Table II, we obtain 
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From the above investigations, firstly, we can discover the 

frequency coefficient as [19] 
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Then, we can calculate the rotation phase angle as 
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Fig. 1. A gauge voltage group is rotating with an angular 

speed ω in the complex plane 

TABLE I 

VECTOR MULTIPLICATION TABLE OF GAUGE VOLTAGE GROUP × v1(t) v1(t-T) v1(t-2T) 

v1(t) v1
2(t) v1(t)v1(t-T) v1(t)v1(t-2T) 

v1(t-T) v1(t)v1(t-T) v1
2(t-T) v1(t-T)v1(t-2T)  

v1(t-2T) v1(t)v1(t-2T) v1(t-T)v1(t-2T)  v1
2(t-2T) 

 
TABLE II 

REAL NUMBER MULTIPLICATION TABLE OF GAUGE VOLTAGE GROUP × v11 v12 v13 

v11 v11
2 v11v12 v11 v13 

v12 v11 v12 v12
2 v12 v13 

v13 v11 v13 v12 v13 v13
2 
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Fig. 2. The phase space of gauge voltage group is rotating 

with the angular speed 2ω in the complex plane 
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Cf
1cos−=α                                   (14) 

Namely, from (5), we can calculate AC frequency as 
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Secondly, we can discover the gauge voltage invariant as 
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In this fashion, we obtain the amplitude as 
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By the way, we can calculate the rms (root-mean-square) 

voltage as 
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IV.  DEFINING AND USING GAUGE DIFFERENCE VOLTAGE 

GROUP 

In this section, we will present another symmetry group to 

calculate AC frequency and the amplitude. 

Similarly, we define three difference voltage vectors in the 

complex plane in Fig.3 as the gauge difference voltage group. 

Then three difference voltage vectors are expressed as 
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Consider the group rotating through some degrees in the 

complex plane, the structure of the group will not change if 

AC frequency does not change in the rotation time. It is the 

rotation invariance according to group theory, thus we can 

discover invariants of the group. In Fig. 3, we find that v2(t) 

and v2(t-2T) are symmetrical about x axis with α, then these 

two elements, plus the middle element v2(t-T) will be used to 

calculate the frequency coefficient invariant. 

In what follows, we construct the vector multiplication table 

of the gauge difference voltage table that is shown in Table 

III. Substituting (19) into the elements of Table III, we obtain 
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The above elements consist of the phase space of the gauge 

difference voltage group that is illustrated in Fig. 4. Thus we 

find that v2
2
(t-T) and v2(t)v2(t-2T) equal to each other, this 

pair will be used to calculate the gauge difference voltage 

invariant. 

Moreover, three instantaneous difference voltages of (19) 

are expressed as 

TABLE III 

VECTOR MULTIPLICATION TABLE OF GAUGE DIFFERENCE VOLTAGE 

GROUP × v2(t) v2(t-T) v2(t-2T) 

v2(t) v2
2(t) v2(t)v2(t-T) v2(t)v2(t-2T) 

v2(t-T) v2(t)v2(t-T) v2
2(t-T) v2(t-T)v2(t-2T)  

v2(t-2T) v2(t)v2(t-2T) v2(t-T)v2(t-2T)  v2
2(t-2T) 

 
TABLE IV 

REAL NUMBER MULTIPLICATION TABLE OF GAUGE DIFFERENCE VOLTAGE 

GROUP × v21 v22 v23 

v21 v21
2 v21v22 v21 v23 

v22 v21 v22 v22
2 v22 v23 

v23 v21 v23 v22 v23 v23
2 
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Fig. 4. The phase space of gauge difference voltage group 

is rotating with the angular speed 2ω in the complex plane 
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Fig. 3. A gauge difference voltage group is rotating with 

an angular speed ω in the complex plane 
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With the above data, we construct the real number 

multiplication table of the gauge difference voltage group that 

is shown in Table IV. Substituting (21) into the elements of 

Table IV, we obtain 
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From the above investigations, we firstly, we discover the 

frequency coefficient as  

αcos
2 22

2321 =
+

=
v
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fC                            (23) 

Then we can obtain the rotation phase angle and AC 

frequency according to (14) and (15) respectively. 

Secondly, we can discover the gauge difference voltage as 
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In this fashion, we obtain the amplitude as 
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By the way, we can calculate the rms voltage as 
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Because all elements of the gauge difference group are 

difference voltages, the above results are little influence by the 

DC component. Furthermore, we will calculate the DC 

component directly with measured AC frequency and the 

gauge voltage group next. 

V.  CALCULATING DC COMPONENT OF 

INPUT SIGNALS 

In Fig.5, we can express three voltage vectors contains the 

DC component as 
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where vDC is the DC component. Then, we can find the 

following relationship from the above equations. 
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Solving the above equation, we can obtain the DC 

component as 
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Here fC is obtained with the gauge difference voltage group. 

Commonly, the DC component is treated as low frequency 

component that is difficult to calculate. In contrast to this, (29) 

is the much simple and fast solution. 

VI.  DEALING WITH HARMONIC DISTORTION 

The above solutions are only valid for the pure sinusoidal 

signal. But harmonics exist in power systems. Therefore we 

propose three approaches to reduce the influence of harmonic 

distortion next. 

A.  Separating Gauge Sampling Frequency from Data 

Sampling Rate 

Firstly, we separate the gauge sampling frequency from the 

data sampling rate. We show the concept in Fig. 6. In this 

example, we set one gauge sampling period as four times to 

data sampling periods. In general, the relationship between the 

gauge sampling frequency and the data sampling rate can be 

expressed as 

1
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where fS is the gauge sampling frequency, T is the gauge 
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Fig. 6. Separation of gauge sampling frequency from 

data sampling rate 
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Fig. 5. A gauge voltage group containing DC 

component is rotating with an angular speed ω in the 

complex plane 
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sampling period, f1 is the data sampling rate, T1 is the data 

sampling period, n is any integer respectively. 

B.  Establishing a Symmetry Broken Criterion 

Secondly, we establish a symmetry broken criterion as 

1
2 22

2321 >
+

=
v

vv
fCBRK                            (31) 

When the above criterion is satisfied, AC frequency is not 

measurable with the group and we latch previous measured 

value. So this criterion can eliminate the bad data effectively. 

C.  Implementing a Moving Average 

Thirdly, we can reduce the influence of harmonic distortion 

by implementing a moving average. Here are the averaging 

equations of first the frequency coefficients, second the 

rotation phase angle, third AC frequency, last the amplitude 

respectively. 






















=

=

=

=

∑

∑

∑

∑

−

=

−

=

−

=

−

=

1

0

1

0

1

0

1

0

1

1

1

1

M

k

kavg

M

k

kavg

M

k

kavg

M

k

CkCavg

V
M

V

f
M

f

M

f
M

f

αα

                             (32) 

where M is the number points of moving average process. 

Then the time of moving average can be calculated as 

1TMTavg ×=                                  (33) 

D.  Flow Chart of the Measuring Process 

To this end, we present the flow chart of AC frequency 

measuring process in Fig.7. In addition to this, we can obtain 

real-time active and reactive power with measured AC 

frequency [9]. In this connection, we can stamp measured AC 

frequency and real-time power with UTC time flag and send 

them to PDC of wide-area monitoring and control system. 

VII.  PERFORMING NUMERICAL SIMULATION 

In this section, we present a numerical simulation. The 

parameters are shown in Table V. Then, the input signal can 

be expressed as 





≥+++
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where Cφ  is the phase angle at the point of starting frequency 

ramp. Therefore in this case, one is that the DC component 

1.5V is larger than AC amplitude 1V, another is that steady 

AC frequency 59.51Hz is not the rated frequency 60Hz, still 

another frequency ramp speed is 2.5 Hz/s. All these conditions 

will cause large TVE (total vector error) according to [20]. 

Then, the gauge sampling period is obtained 
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s
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And we define the rate change of frequency estimation as 
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In simulation, we use the gauge difference voltage group to 

calculate AC frequency and the amplitude. Figure 8 illustrates 

the results of the numerical simulation. 

In Fig. 8a, the summation of measured AC amplitude and 

the DC component indicate that not only AC amplitude, but 

also the DC component are correctly measured even the latter 

is larger than the former.  

In Fig. 8b, the measured frequencies are linear before the 

starting point indicates that AC frequency is measured 

correctly even it is the shifted frequency 59.51 Hz that has 

large TVE. After the starting point, some measured 

instantaneous frequencies are pulse shapes because frequency 

ramping changes invariants of symmetry groups. After 

implemented the moving average, the measured average 

frequencies become approximately linear but still track the 

theoretical frequency fast. 

In Fig. 8c, the measured ROCOF according to (36) is 

shown. It indicates that the result is oscillated around the 
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Fig. 7. Flow chart of the measuring process 

 

 

TABLE V 

PARAMETERS OF NUMERICAL SIMULATION 

Symbol Quantity Setting data 

f0 Rated frequency 60 Hz (1/T0) 

fS Gauge sampling frequency 200 Hz 

f1 Data sampling rate 4000 Hz (20 fS) 

f AC frequency 59.51 Hz 

df ROCOF 2.5 Hz/S 

V Voltage amplitude 1V 

vDC DC component 1.5V 

Vdeg Voltage initial phase angle 0 Degree 

Tavg Time of moving average 0.01667 Second (T0)  

Ttotal Time of data recording 0.40 Second 
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theoretical ROCOF 2.5 Hz/s. 

By the way, because the measured results of the gauge 

difference voltage group is little influence by the DC 

component, we can use the gauge difference active power 

group (instead of voltage with active power) to measure low 

frequency oscillations in power systems. 

VIII.  CONDUCTING FIELD TEST 

In this section, we present a field test. The parameters are 

shown in Table VI. Then, the gauge sampling period is 

obtained as 

)(004.0
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s
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T
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And we define the rate change of frequency estimation as 
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Because input signals containing DC component, we use the 

gauge difference voltage group in field test. Figure 9 and 10 

illustrates the results of field test. 

In Fig. 9a, it indicates that we measured the amplitude 

properly though input signals contain harmonics. 

In Fig. 9b, the measured DC components oscillate around -

0.004pu that is the DC offset of the device. This implies that 

we can shift the DC offset with proposed measuring method. 

In Fig. 10a, the measured instantaneous frequencies oscillate 

around the rated frequency 60Hz because input signals contain 

harmonics. At some points, the measured instantaneous 

frequency even equal to zero because of at that point symmetry 

is broken. This result shows that the power system contains a 

large amount of harmonics. 

In Fig. 10b, after made moving average, the measured 

TABLE VI 

PARAMETERS OF FIELD TEST 

Symbol Quantity System data 

f0 Rated frequency 60 Hz (1/T0) 

fS Gauge sampling frequency 250 Hz 

f1 Data sampling rate 4000 Hz (16 fS) 

Tavg Time for moving average 0.03333 Second (2T0) 

Ttotal Time of data recording 0.40 Second 

 00.511.522.53
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4Time (sec)
Instantaneous voltage(V) Summation of AC amplitude and DC components(V)

(a)
 

59.559.659.759.859.96060.160.260.360.460.5
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4Time (sec)

Theoretical frequencies(Hz)Measured instantaneous frequencies(Hz)Measured average frequencies(Hz)
(b)

 

-0.500.511.522.533.544.5
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4Time (sec)

Measured ROCOF (Hz/s) Theoretical ROCOF (Hz/s)
(c)

 
Fig. 8. The measured results of the numerical simulation. 

(a) The instantaneous voltage and the summation of AC 

amplitude and the DC component. 

(b) The theoretical, the measured instantaneous, and 

the measured average frequency 

(c) The theoretical and the measured ROCOF 

-1.2-0.9-0.6-0.300.30.60.91.2
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4Time (sec)

Instantaneous voltage (V) Measured AC voltage amplitude (V)
(a)

 

-0.006-0.0055-0.005-0.0045-0.004-0.0035-0.003-0.0025-0.002
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4Time (sec)

Measured DC components (V)
(b)

 
Fig. 9. The measured amplitude of the field test. 

(a) The instantaneous voltage and the measured AC 

amplitude.  

(b) The measured DC component. 



 7 

average frequencies oscillate around the rated frequency 60Hz 

and variation scale becomes much smaller. Therefore, for real 

control and protection systems, we should select suitable 

length of moving average according to their objects. 

In Fig. 10c, the measured ROCOF oscillations are large 

because of the influence of harmonic distortion. 

IX.  CONCLUSIONS 

In summary, we defined and measured AC frequency by 

combing spiral vector theory with group theory. Moreover, we 

dealt with harmonic distortion with three approaches and these 

ideas are also from symmetry principles. Besides, the 

numerical simulation and the field test show that the proposed 

method is valid. As we all know, conventional methods first 

measure synchrophasor in the reference frame, second measure 

AC frequency. In contrast to this, the proposed method first 

measure AC frequency, second measure synchrophasors. 

Because it is easy to improve accuracy of time measurement, 

we can develop low-cost and high-speed and high-precision 

PMUs for smart grid. At last, we will also report new results 

how to define and measure synchrophasors based on symmetry 

principles in the near future. 
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Fig. 10. The measured frequencies of the field test 

(a) The measured instantaneous frequency. 

(b) The measured average frequency. 

(c) The measured ROCOF 


