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 Abstract—The accuracy and numerical efficiency of 

synchronous machine models are known to have a significant 

impact on power systems transient studies. In this paper, a new 

saturable synchronous machine model for state-variable-based 

transient simulation programs is proposed. The new model uses 

the voltage-behind-reactance formulation, which, unlike the 

standard qd models, allows a direct interface between the 

machine and any external network. The proposed model fully 

includes static and dynamic cross-saturation using the single 

saliency factor approach and allows easy incorporation of any 

number of d-axis damper windings and differential leakage 

inductances. The new model is shown to yield very high accuracy 

and improved numerical efficiency compared to the conventional 

indirectly interfaced qd models. 
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I.  INTRODUCTION 

he accurate and efficient modeling of synchronous 

machines (SMs) for power systems transient studies has 

been a subject of interest for many decades [1]–[5], [7]–[26]. 

Traditionally, SMs have been represented in transient 

programs by classical qd  models, which are based on Park’s 

two-reaction theory [1]. These models are very efficient and 

practical due to their time-independent decoupled inductances, 

simple equivalent circuits, and constant steady-state currents, 

voltages, and fluxes. However, interfacing of qd  models with 

external networks is often problematic [2]. In particular, in 

state-variable-based simulation programs (e.g. 

MATLAB/Simulink, SimPowerSystems [3], PLECS [4], 

ASMG [5], etc.), the voltage-input, current-output formulation 

of the qd  models does not permit their direct interfacing with 

series inductive elements or ideal switches [2]. A typical 

approach to solve this problem is to add a snubber at the 

machine’s stator terminals. On the one hand, a small snubber 

resistance introduces a considerable error. On the other hand, a 
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large snubber resistance significantly increases the numerical 

stiffness [6] of the state-space model.  

An alternative method to overcome this interfacing issue is 

to use a phase-domain (PD) model [1], [7], [8]. Whereas this 

model lacks efficiency due to its time-varying coupled 

inductances, it can be directly interfaced to any external 

network. It is also believed to offer better absolute numerical 

stability, which can be useful for real-time simulations [8]. In 

1998, a magnetically linear voltage-behind-reactance (VBR) 

SM model was introduced [9], which was shown to be 

considerably more efficient than the PD model. In the VBR 

model, the stator is represented in the abc  phase coordinates 

as a voltage source behind time-varying impedance, thus also 

allowing direct interfacing with any external system. As 

opposed to the PD model, the rotor dynamics are represented 

by state-space equations with flux linkages as state variables, 

yielding better scaled eigenvalues, and consequently a more 

efficient solution. Numerical approximations and techniques 

have also been proposed to obtain constant equivalent stator 

impedance in the magnetically linear VBR SM model [10]–

[12], further improving its efficiency. Magnetic saturation was 

eventually introduced in VBR SM models, first in the d -axis 

only [13], and later in both axes (including cross-saturation) 

[14], [15]. 

The existence of magnetic saturation in SMs is a duly 

recognized fact. Much literature has been devoted to modeling 

magnetic saturation in SM models for transient studies; yet, 

numerous conflicting opinions remain today [13]–[22]. For 

round rotor machines, a common approach is to apply 

saturation to the main flux (thus including cross-saturation) as 

a function of the d -axis saturation curve [1], [3], [4], which 

can be easily obtained from the standard open-circuit test. 

However, practical experiments have shown that the q -axis 

may, in some cases, saturate more heavily than the d -axis 

[16]. For salient-pole SMs, a common assumption is to neglect 

q -axis saturation, and thus cross-saturation altogether [3], 

[13], [16]. The usual reasoning behind this hypothesis is that 

the path of the q -axis flux is largely in air [16]. Finite-element 

analysis (FEA) [17] and experimental studies [18], [19] have 

shown however that cross-saturation has a considerable effect 

even for salient-pole machines. Ideally, a two-factor saturation 

approach, such as the one originally presented in [20] (or later 

adapted in [14]), would be preferred for both round rotor and 

salient-pole machines. In reality, for system transient studies, 

only the d -axis saturation curve is typically known [21]. 

T



Therefore, the single saliency factor approach [4], [19], [21], 

in which q -axis saturation and cross-saturation are taken into 

account (solely based on the d -axis saturation curve) is a very 

practical and appealing technique. 

Another issue of debate in SM modeling is the composition 

of the equivalent d -axis rotor circuit [1], [23]–[25]. Some 

authors argued about the necessity, or lack thereof, of 

including so-called differential leakage inductances [23]–[25], 

which link the fluxes of some or all rotor windings, but not of 

the stator winding. Whereas the physical meaning of such 

inductances is usually accepted [24], [25], linear circuit theory 

showed that the sole differential leakage inductance of 2
nd

 

order rotor circuits can be equated to zero [23], [24]. 

However, this is done by changing the stator leakage and 

magnetizing inductances from physical to fictitious values, 

which in turn makes the inclusion of leakage and main flux 

saturation more complicated. It is also not clear if this can be 

done for 3
rd

 order (or higher) rotor circuits. It is argued in [1] 

that simply neglecting the differential leakage inductance 

yields satisfactory results for most cases. This point of view is 

commonly accepted, as numerous saturable SM models do not 

include differential leakage inductances [1], [3], [4], [13], 

[21]. To satisfy the modeling needs of various users, a general 

model should handle equivalent rotor circuits with or without 

differential leakage inductances. One such model is presented 

in [14], wherein the rotor is represented by an arbitrary 

transfer function. This approach is very flexible, but has the 

disadvantage of being highly complicated. 

This paper develops a straightforward and easy-to-use 

saturable VBR SM model for state-variable-based transient 

programs. Magnetic saturation is represented explicitly using 

the single saliency factor approach, while fully incorporating 

dynamic and static cross-saturation. The proposed model is 

derived so that the equivalent d -axis rotor circuit (made of 

passive circuit elements) can include as many damper 

windings as necessary and may or may not have differential 

leakage inductances. Moreover, as opposed to [14], the 

equivalent stator resistance matrix is constant and diagonal, 

further simplifying the model. 

II.  REPRESENTATION OF MAGNETIC SATURATION 

The magnetomotive force (MMF) and the main flux of 

anisotropic machines are not aligned [20], [21]. To facilitate 

the modeling of cross-saturation in such machines, a common 

approach is to introduce a fictitious equivalent isotropic 

machine [20], [21], wherein the MMF and the main flux are 

aligned and therefore a unique magnetic characteristic exists. 

The magnetizing current mi  and main flux mλ  of the resulting 

isotropic machine are related to their q -and d -axis 

projections as 
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A vector diagram depicting the re-scaled projections of the 

currents and fluxes in the q -axis is shown in Fig. 1. For the 

two-factor saturation approach, m  is a saturation-dependent 

parameter [20]. However, in most practical cases, not enough 

data is available to apply the two-factor saturation approach, 

and the single saliency factor method [21] is preferred (as in 

this paper). In this case, m  is assumed to remain constant and 

is defined as 
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where mquL , mduL , mqsL , and mdsL  are the unsaturated and 

saturated q - and d -axes magnetizing inductances, 

respectively. In other words, (3) assumes that the q - and d -

axis saturate at the same level in all conditions. This approach 

works for both salient-pole and round rotor machines; for the 

latter, m  simply tends towards 1. Finally, in the single 

saliency factor approach, the d -axis saturation characteristic 

is applied to the resulting main flux, (1). Two-factor saturation 

approaches are herein excluded from further consideration; 

however, only minor modifications to the proposed model 

would be required to incorporate these more general methods.  

III.  SYNCHRONOUS MACHINE DYNAMIC MODEL 

A.  Equivalent Circuits 

In this paper, a SM with M  damper windings in the q -axis 

and N  damper windings in the d -axis is considered; its 

equivalent d - and q -axes circuits in the rotor reference frame 

are depicted in Fig. 2. The zero-sequence circuit can be found 

in [1] and is not presented here due to space constraints. Here, 

all elements are referred to the stator, and motor sign 

convention is used. As it can be observed in Fig. 2a), for 

generality [25], the equivalent d -axis rotor circuit possesses 

as many differential leakage inductances, denoted lkfdjL , as it 

has d -axis damper windings. It is assumed that none, some, or 

all of these inductances may be set to zero as long as all the 

winding leakage inductances ( lkdjL  and lfdL ) are present. 
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Fig. 1. Vector diagram presenting the magnetizing current mi and main flux 

mλ of the equivalent isotropic synchronous machine.  
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Fig. 2. Equivalent circuits of the synchronous machine: a) the d-axis; and b) 

the q-axis. 

B.  Dynamic Equations in qd Coordinates 

The dynamic equations of the equivalent networks of Fig. 2 

(with the addition of the zero-sequence circuit [1]) can be 

easily derived. The resulting voltage equations are 

 qsdsrqssqs pirv λλω ++=  (4) 

 dsqsrdssds pirv λλω +−=  (5) 

 ssss pirv 000 λ++++====  (6) 

 .,...,2,1,0 Mjpir kqjkqjkqj =+= λ  (7) 

 .1,,...,2,1, +=+= NNjpirv drjdrjdrjdrj λ  (8) 

where 

 [ ]TfdkdNkdkddr ffff L21=f . (9) 

Here, f  may represent v , r , i , or λ . The corresponding 

flux linkages are defined as 

 mqqslsqs iL λλ +=  (10) 

 mddslsds iL λλ +=  (11) 

 slss iL 00 =λ  (12) 

 .,...,2,1, MjiL mqkqjlkqjkqj =+= λλ  (13) 

 uiL mddrldrdr λ+=λλλλ  (14) 

where [[[[ ]]]]T1111 L====u  and 

 =ldrL  (15) 
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It can be observed that as long as the winding leakage 

inductances are non-zero, (15) will remain non-singular 

independently of the existence of differential leakage 

inductances. Finally, the magnetizing fluxes are given by 
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where the relationship between ( )mmqL λ  and ( )mmdL λ  was 

defined in (3). 

C.  Voltage-Behind-Reactance Formulation 

Rotor flux linkages are typically selected as state variables 

in SM VBR models [9]. However, in order to derive an 

explicit SM model incorporating main flux saturation, it is 

convenient to choose the magnetizing fluxes mqdλ  as state 

variables [13]–[15]. Consequently, one pair of rotor flux 

linkages has to be removed from the equivalent rotor 

subsystem state variable vector, which thus becomes 

( )[ ]TNdrdrkqMkqmdmqr 122 += λλλλλλ LLx .(18) 

To start the derivation of the model, it is useful to first 

define ( ) ( )mmmm L λλ σσ /1≡Γ , where σ  denotes the axis ( q  

or d ). Then, differentiating (16) and (17) yields 
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which, using the chain rule, can be rewritten as [14] 
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At this point, it is necessary to define the rotor currents 

(auxiliary variables) as a function of the rotor and magnetizing 

flux linkages. Solving (13) for q -axis rotor currents gives  

 .,...,2,1, Mj
L

i
lkqj

mqkqj

kqj =
−

=
λλ

 (23) 

whereas the d -axis rotor currents are obtained from (14): 

 ( )uLi mddrldrdr λ−= − λλλλ1 . (24) 

Since ldrL  is a constant matrix, it only needs to be inverted in 

the initialization stage. Moreover, if the coupling between all 

d -axis windings is assumed equal, i.e. NjLlkfdj ,...,1,0 == , 

matrices ldrL  and 1−
ldrL  will be diagonal, hence decreasing the 



overall computational cost of the model. 

Taking the time derivative of (23) and (24), substituting the 

resulting equations into (20), after some algebraic 

manipulations, the magnetizing flux state equations are 

rewritten as [14] 
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where  
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and where ),(1 ijLldr
−  refers to the element found in the j th 

row and i th column of 1−
ldrL . 

To obtain an explicit model, (25) needs to be written as a 

function of state variables and inputs. Substituting (10), (11), 

and (25) into (4) and (5) and solving for qdspi  yields 
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where 
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Next, the rotor flux linkages time derivatives are written as 

a function of state variables and inputs. Solving for kqjpλ  and 

drjpλ  in (7) and (8), respectively, we obtain 

 .,...,2,1, Mjirp kqjkqjkqj =−=λ  (31) 

 .1,,...,2,1, +=−= NNjirvp drjdrjdrjdrjλ  (32) 

where the rotor currents are related to rotor flux linkages and 

magnetizing fluxes by (23) and (24). Due to the choice of state 

variables [see (18)], (31) and (32) will only be state equations 

(and thus integrated) for Mj ,...,3,2=  and 1,,...3,2 += NNj , 

respectively. The final step consists in eliminating the auxiliary 

algebraic variables 1kqλ  and 1drλ . Substituting (23) and (24) 

in (16) and (17), respectively, after some algebraic 

manipulations, 1kqλ  and 1drλ  are related to state variables and 

inputs by 
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Having derived the necessary equations for the equivalent 

rotor subsystem, the stator is henceforth considered. First, 

inserting (10) and (11) into (4) and (5) yields [14] 
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Then, substituting (12) into (6), (25) into (35), and merging the 

two resulting sets of equations together, we obtain 
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where  

 







+









−
+

















−

−
=













d

q

mq

md

r
ds

qs

mqdmdd

mqqmqd

r

d

q

e

e

i

i

LL

LL

e

e

λ

λ
ωω

''

''

. (37) 

Applying Park’s inverse transformation [1] to (36) gives the 

final machine-network interfacing equation in abc  phase 

coordinates: 

 ( ) ''
abcsabcsrsabcslsabcssabcs ppLr eiLiiv +++= θ . (38) 

Here, [ ]T

dqsabcs ee 0
''''1'' −= Ke , [ ]Tcsbsasabcs fff=f  

(where f  may represent v  or i ), sK  is Park’s transfor-

mation matrix [1], and 

















+−

−+

−+

+

















−

−

−

−=

)120()()120(

)()120()120(

)120()120()(

15.05.0

5.015.0

5.05.01

oo

oo

oo

rrr

rrr

rrr

as

LLL

LLL

LLL

L

θθθ

θθθ

θθθ

L

 (39) 

 mqdc

mddmqq

b

mddmqq

a LL
LL

L
LL

L
3

2
,

3
,

3
====

−−−−
====

++++
====  (40) 

 ( ) )2sin()2cos( ϕϕϕ cb LLL += . (41) 

Eq. (38) shows that unlike the model presented in [14], the 

proposed equivalent stator circuit has a constant diagonal 

resistance matrix. This property was achieved by adding and 

subtracting certain speed voltage terms in ''
abcse . 

IV.  COMPUTER STUDIES 

To validate the proposed approach and assess its perfor-



mance, the saturable SM VBR model (Section III-C) has been 

implemented in MATLAB/Simulink using the PLECS toolbox 

[4]. A 202-MVA salient-pole synchronous generator (SG) with 

one q -axis and one d -axis damper windings, and one 

differential leakage inductance (denoted by 1lkdfL ), is 

considered [22]. Machine parameters and saturation data are 

listed in Appendices A and B, respectively. For comparison, a 

standard qd  SM model has also been implemented in the 

MATLAB/Simulink environment. Saturation is therein 

represented using the Explicit Flux Correction approach [26] 

(with minor modifications to take into account 1lkdfL ), which 

was found to offer the best combination of accuracy and 

numerical efficiency among saturable qd  models. The 

simulations were executed on a PC with 2.8GHz Intel CPU 

and 4GB of RAM. 

A.  Model Verification 

The consistency of the proposed SM VBR model is first 

verified by comparing it to the qd  SM model for a simple 

single machine-infinite bus system. As stator voltages are 

system inputs, the qd  model and the infinite bus are directly 

interfaced. In this study, the SG is assumed to be initially in 

steady state with nominal field and stator voltages, and a 

9.0 pu mechanical torque. At 5.0=t s, the stator voltage is 

increased to 05.1 pu. Simulink’s robust and accurate ode45 

solver is used for this case study. Its settings, which were 

chosen as to minimize numerical errors, are as follows: 

maximum and minimum step sizes of 410− s and 810− s, 

respectively, and absolute and relative tolerances of 510− . The 

predicted transients in q -axis stator current qsi  and rotor 

angle δ  are presented in Fig. 3 and Fig. 4, respectively. No 

difference is observed between the VBR and qd  models, 

which validates the consistency of the proposed approach. The 

2-norm relative error [27] between the solution trajectories 

produced by the two models is found to be less than 01.0 % for 

both qsi  and δ , further verifying the model’s consistency. 

B.  Comparison between the VBR and qd Models 

To assess the accuracy and efficiency of the proposed 

model in more practical situations, a small network, presented 

in Fig. 5, is considered. In this network, a SG is connected 

through a short cable to the low voltage (LV) side of a step-up 

transformer, while a three-phase Thévenin equivalent source 

representing the remaining ac subsystem is connected to the 

high voltage (HV) side. The system parameters are 

summarized in Appendix C. The selection of a small network 

for this case study gives more insight into the machine model, 

as the accuracy and the computational cost of the solution can 

be traced back directly to its numerical properties. Since the 

machine is in series with inductive elements, the qd  model 

cannot be interfaced directly with the network, and a snubber 

(herein resistive) must be used. Two instances of the qd  

model with different values of resistance for the snubber are 

used: 50=snR Ω for model 1qd , and 1=snR Ω for model 

2qd .  

In this study, the SG is initially in steady state with 

mechanical torque of 9.0 pu. The source voltage is initially set 

to 1pu, and the machine field voltage is set to 5.1 pu. At 

2.0=t s, a balanced three-phase fault is simulated by instantly 

decreasing the source voltage to 5.0 pu. The fault is cleared 6 

cycles later, and the source returns immediately to its pre-fault 

value. A reference solution is obtained by simulating this 

scenario using the VBR model and the ode45 solver with very 

stringent settings (max. and min. step sizes of 510− s and 
810− s, respectively, and absolute and relative tolerances of 
610− ). Three models are compared: 1qd , 2qd , and the 

proposed VBR. Due to the numerical stiffness caused by the 

snubber, the stiffly-stable ode15s solver is used with the 

following settings: max. and min. step sizes of 310− s and 
810− s, respectively, and absolute and relative tolerances of 
410− .  

The predicted transient in q -axis stator current qsi  is 

shown in Fig. 6. For better clarity, a magnified view of qsi  is 

reproduced in Fig. 7. The transients in d -axis magnetizing 

flux mdλ  and electromagnetic torque eT  are also plotted in 

Fig. 8 and Fig. 9, respectively. These figures show that the 

proposed VBR and 1qd  models yield solutions 
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Fig. 3. Stator current qsi  following a step increase in stator  voltage 
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Fig. 4. Rotor angle δ  following a step increase in stator voltage. 

 



indistinguishable from the reference. However, the 2qd  

model generates a noticeable error, which is caused by the use 

of a relatively small snubber. Similar observations are made 

when computing the 2-norm relative errors of the solution 

trajectories of each model with respect to the reference 

solutions for qsi , mdλ , and eT  [see Table I]. As it can be seen 

in Table I, all errors are smaller than 1.0 % for the 1qd  and 

VBR models, whereas large errors, as high as 94.3 %, exist 

when using the 2qd  model. 

To quantify the efficiency of the proposed approach, the 

number of time steps taken by each model and their overall 

simulation time for this study are summarized in Table I. The 

VBR model requires only 1,498 time steps, as opposed to 

7,934 and 2,050 for 1qd  and 2qd , respectively. This is due to 

the VBR model’s well-scaled eigenvalues [9]. Even the 2qd  

model, with the smaller snubber, yields a numerically stiffer 

problem. However, despite the fewer number of time steps 

taken, the proposed VBR model is significantly slower 

( 945.0 s) than the 2qd  model ( 339.0 s), while still being 

faster than the 1qd  model ( 206.1 s), which gave similar 

accuracy. It is clear from these results that the main caveat of 

the proposed saturable VBR model lies in its time-varying 

equivalent stator inductance, which requires the reformulation 

of the state model at every time step and thus considerably 

decreases its efficiency [10]. Its flop count is also higher than 

those of the most efficient qd  models. Nonetheless, for a 

given accuracy, the VBR model is shown to be more efficient, 

i.e. faster, than the corresponding indirectly interfaced qd  

model. The proposed model’s ability to yield very accurate 

and stable solutions for large time steps is particularly valuable 

when simulating power converters with low switching 

frequencies [14] or average-value models (AVMs) [28].  

 
TABLE I 

ACCURACY AND EFFICIENCY OF THE PROPOSED MODEL 

  1qd  2qd  VBR 

2-norm 

relative 

error 

qsi  0.08% 3.70% 0.02% 

mdλ  0.07% 3.94% 0.02% 

eT  0.01% 0.86% 0.003% 

Number of time steps 7.934 2,050 1,498 

Simulation CPU time 1.206s 0.339s 0.945s 

V.  CONCLUSIONS 

A simplified saturable synchronous machine (SM) model 

using a voltage-behind-reactance (VBR) formulation with a 

generalized equivalent d -axis rotor circuit made of passive 

components is presented. The proposed model fully 

incorporates static and dynamic cross-saturation using the 

single saliency factor approach. The new model can be directly 

interfaced to any external network, including series inductive 

elements. The proposed model is also derived as to allow the 

presence (or lack thereof) of any amount of differential 

SG
CableThév. Imp.

 
Fig. 5 Small network for the second case study. 
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Fig. 6. Stator current qsi  for a three-phase fault. 
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Fig. 7. Magnified view of the stator current qsi  during the three-phase fault. 
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Fig. 8. Magnetizing flux mdλ  for a three-phase fault. 
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Fig. 9. Electromagnetic torque eT  for a three-phase fault. 

 



leakage inductances. The validity of the proposed model is 

first confirmed in a simple single machine-infinite bus case 

study. The paper also demonstrates that the proposed model 

requires significantly fewer time steps than an indirectly 

interfaced classical qd  model that achieves a similar 

accuracy. 

VI.  APPENDIX 

A) Synchronous generator parameters (all parameters are 

referred to the stator) [22]: 

202 MVA, 8.13 kV, 60 Hz, 64  poles, 61020 ⋅=J J·s
2
, 

0019.0=sr Ω, 495.0=lsL mH, 500.0=fdr mΩ, 

320.0=lfdL mH, 045.01 −=lkfdL mH, 0071.01 =kdr Ω, 

086.01 =lkdL mH, 0065.01 =kqr Ω, 038.01 =lkqL mH, 

27.2=mdL mH, 545.0=mqL mH. 

 

B) Synchronous machine saturation curve (peak values): 

mλ (Wb) 10.7 16.2 20.2 24.3 26.4 28.0 29.3 29.9 

mi (kA) 4.757 7.245 9.148 11.71 13.39 15.37 18.30 20.49 

 

C) System parameters: 

Transformer: 300=baseS MVA, 230=HV kV, 8.13=LV kV, 

8210 jZZ +==  %. 

Cable: 045.0015.00 jZ += Ω, 015.0005.01 jZ += Ω. 

Thév. Eq.: 230=nomV kV, 1.2350 jZ += Ω, 5.1831 jZ += Ω. 
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