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 Abstract — This paper presents a method to implement the 

Electromagnetic Transients (EMT) simulation algorithm on a 

multi-core or grid processing platform. The simultaneous use of 

multiple processors to divide and solve portions of the simulation 

has the potential to speed up the overall simulation significantly. 

However, communication bottlenecks can reduce its effectiveness. 

This paper uses the Electric Network Interface (ENI), which is a 

TCP based communication interface implemented using 

transmission lines (t-lines) as natural interface ports. ENI allows 

the sub-systems on either side of t-lines to be simulated on 

separate processors on both local host and distributed computers 

connected by standard local area networks (LAN). Using several 

implementation examples, it is shown that the communication 

bottleneck is significant when the execution time for each 

subsystem is small, and can result in slower simulations than on a 

single processor. However, with sufficiently large subsystems, 

there is significant speed-up to the overall execution time. 
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I.  INTRODUCTION 

IGH Performance Computing (HPC) has always attracted 

users, from various fields of study, who need to solve 

large and complex computational problems. Often, depending 

on the fields of study and the nature of the problem, practical 

systems cannot be built before assessment of the robustness of 

the system is accomplished. Simulated studies are a great way 

of analyzing the accuracy, efficiency and robustness of any 

such problem. In Power Systems, often, the nature and 
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complexity of the problem leads to detailed models that 

rapidly increase the size of the equations to be solved. Such 

analyses, when performed using simulation software that is 

built to use conventional computers (single CPU) take a long 

time. With the advancement in multiprocessor computer 

technologies and such computers becoming commodity 

hardware, power systems simulation software needs to be able 

to harness the multiple-core computing power generally 

available. Electromagnetic transient (EMT) simulation uses 

highly accurate models of power equipment [1]. These models 

typically require small time steps, and are hence computation-

ally intensive. In EMT simulation transmission lines can be 

used to separate a system into coupled sub-systems which can 

then be solved on a single core each and exchange results at 

the end of computation. This is due to the finite travel time of 

information (imposed by the relativistic speed limit) across the 

line. Hence, each of these subsystems can largely be solved 

independently and thus in parallel. This property has been 

exploited in the past to construct real-time simulators using 

specialized hardware [2]. This paper discusses implementation 

of a software parallelization on a combined multi-core/grid 

platform. The methodology and performance of this approach 

are reported in this paper. 

II.  GRID COMPUTING 

The term “The Grid” [3] [4] [5] was suggested in the mid 

1990's to denote the construction of a nation-wide computing 

infrastructure analogous to the power grid. A very large scale 

distributed computing system was envisioned connecting 

geographically distributed machines and network resources 

available at various institutions and organizations. Grid 

computing systems, even at much smaller scale (as in this 

paper), provide a distributed computing environment 

consisting of shared distributed computing resources often 

ranging from off-the-shelf personal computers (now with 

multiple cores) to high-end clusters (specially designed 

computers with high-end processors and communication 

backplane). Such small-scale grid environments are easily 

affordable to engineering organizations or can even be built 

using LAN interconnected workstations already available.  

In this paper ‘grid computing’ refers to the use of a parallel 

algorithm run on locally distributed computing resources. This 

could be one physical location (single machine with multiple 

cores) or on several locations (multiple machines with one or 

several cores). Although the examples shown were 

implemented on a single computer with multiple cores, the 

implemented algorithm can be used in both cases. 

H 
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A.  Parallel Computing using the grid 

Parallel Computing is normally an integral part of grid 

computing. By definition, it is the solution of a computational 

problem by decomposing it into multiple parts and executing 

each part simultaneously on a separate computing resource [6]. 

In contrast, in traditional sequential computing, the 

instructions are executed one after the other on a single 

processor. As task execution is sequential, even non-

interdependent tasks have to wait until the processor finishes 

other tasks. This limitation is removed with parallel 

processing, thereby often speeding up the computation. A 

decade ago, expensive parallel computing machines having 

several CPUs were used to implement such parallel 

algorithms. Recently, with multiple core machines becoming a 

commodity, more affordable parallel computing platforms are 

now available.  

There are several models of parallel computing, such as 

shared memory based parallel programming and distributed 

memory based parallel programming. In the former (shared 

memory architecture), a number of processors use the same 

shared memory. In the latter (distributed memory program-

ming model), each processor has its own memory. As the latter 

is more common, and can be created by simply harnessing the 

power of separate computers in a grid, it is the one used in this 

paper. A block diagram of this architecture is shown in Fig. 1, 

where separate but connected computers each model a process 

and have their own dedicated memory. Within this architecture 

style, two approaches are considered: In the first, a single 

machine with multiple cores and very fast communication 

links between them was used. However, the maximum speed-

up possible is limited to the number of cores (which is 

relatively small). In the second approach, multiple machines 

are connected over a local area network (LAN). Here, an 

arbitrary number of parallel CPUs become available; however 

this is at the price of reduced communication speed. 

 

           
Fig. 1.  Distributed Memory Architecture 

 

For communication between the processes in an EMT 

simulation, a message passing based interface is needed that 

allows distributed processes to exchange electrical values with 

one another. Fig. 1 also shows how, in distributed memory 

systems, the data is localized to specific processors. 

III.  ADAPTING SIMULATION SOFTWARE FOR GRID COMPUTING 

In this research we used the PSCAD/EMTDC [7] software 

as the EMT solver. To manage the grid computing 

environment the Xoreax Grid Engine (XGE) software [8] was 

used. The grid engine consists of a coordinator (that schedules 

the tasks) and several agents (that execute the tasks). The 

computing environment used consisted of 40 cores (by 

combining various desktop PCs) running at different clock 

speeds connected over a standard local area network (LAN). 

The interface to the grid engine is an XML script file that 

describes the processes as tasks and how they are to be 

scheduled on the grid. The grid coordinator controls the 

scheduling of tasks on corresponding agent computers. 

The EMT solver (EMTDC) is a sequential program. In this 

paper, it was adapted for use in parallel computing 

environment. 

Each core in the grid is assigned one specific circuit to 

solve, corresponding to a subsystem separated from other 

subsystems by transmission lines (t-lines) or cables. The t-lines 

introduce a natural time delay between sending of the 

electrical signal to receiving it and hence become a natural 

point to split the system into parts that may execute 

concurrently.  The split parts of a simulation can then each be 

solved independently on a single processor core, with a 

separate EMTDC instance running on each core. The 

computations for the t-line or cable model itself are assigned to 

the core simulating any one of the interconnected parts. A   

communication interface had to be designed for the individual 

parts running on separate processor cores to exchange values 

of the electrical quantities at their interfaces. Grid coordination 

software (Xoreax) was used to spawn the individual EMTDC 

instances. Minor modifications were added to the PSCAD 

coordinator to facilitate the message passing between the 

processes. This is referred to as the Electric Network Interface 

(ENI) discussed below. 

A.  Electric Network Interface (ENI) 

The ENI is a TCP Socket based communication interface 

developed for the EMTDC solver that enables communication 

of electrical values between several sub-system simulations 

each running on its own processor core. The concept is 

illustrated in Fig. 2. Consider one of the examples used in this 

paper – a hypothetical 273 bus system constructed by 

connecting 7 IEEE 39 bus system kernels [9] including 

generators, transmission lines and loads, connected via t-lines 

to form a 273 bus system.  

Fig. 2 (A) shows a traditional serial EMT solver consisting 

of the models for 7 such IEEE 39 bus systems bundled in a 

single executable program (i.e. “binary”) and running on a 

single CPU. Fig. 2 (B) shows the implemented Parallel EMT 

Solver where each of the seven IEEE 39 bus system models 

are solved by one EMT Solver each of which is running on 

one processor core. All the solvers are connected via ENI. The 

t-line connections in the system define the placement of each 

TCP-based ENI communication pipe between the solvers. 



 
 
Fig. 2.  Electric Network Interface 

 

The connected EMT Solvers exchange electrical values 

using this communication pipe. The t-line model can be solved 

by either of the EMT Solvers at the ends of their ENI pipe. 

Comparing Figs. 2 (A) and 2 (B) the parallelism of the 

solution is evident. However, the parallelism does not 

automatically imply faster simulation, because it also 

introduces an additional layer of inter-processor communica-

tion overhead that did not exist in the serial solver. 

Nevertheless, results presented later in the paper confirm that 

such ENI based parallel simulation of a sufficiently large 

power system will execute faster than a serial simulation. 

IV.  PARAMETRIC STUDIES 

To test the effectiveness of ENI, simulation experiments 

were conducted with standard IEEE test bus systems by 

running the cases on a single processor core and on multiple 

processor cores using the ENI communication interface. In 

successive experiments, the complexity and size of the systems 

were increased. The goal of these experiments was to analyze 

the speed-up achieved in each test case and study the effect of 

communication overhead involved when using ENI. It will be 

shown that there is a critical size above which the computa-

tional advantage outweighs the communications overhead 

resulting in faster simulations. 

 
Fig. 3.  Pictorial Representation of construction of larger systems using the 

IEEE 39 Bus System as a kernel 

 

The test cases for the experiments were constructed from 

the standard IEEE 14 bus system [10], IEEE 39 bus system, 

IEEE 118 bus system [10] and IEEE 300 bus system [10]. The 

standard IEEE test systems used are as follows: 

i. The IEEE-14 bus test system consists of 11 loads, 5 

synchronous machines, 17 lines and 36 branches. 

ii. The IEEE-39 bus test system consists of 39 loads, 10 

synchronous machines, 46 lines and 95 branches. 

iii. The IEEE-118 bus test system consists of 91 loads, 54 

synchronous machines, 177 lines and 331 branches. 

iv. The IEEE-300 bus test system consists of 195 loads, 69 

synchronous machines, 304 lines and 674 branches. 

Test systems of larger size were constructed from the 

systems described above, by connecting several identical 

systems using transmission lines. For example, Fig 3 shows the 

construction of a 78 bus system by connecting together 2 IEEE 

39 bus systems. Here bus 30 of one system is connected to bus 

38 of the other using a t-line (dotted line), which indicates the 

need for an ENI interface during parallel simulation. 

A.  Experiment Methodology 

The experimental setup was as shown in Fig. 2. Fig. 2 (A) 

represents the sequential execution of a single binary on a 

single processor core and Fig. 2 (B) represents executing 

multiple binaries in parallel using ENI on multiple cores. 

To conduct the experiments, sequential execution of the 

cases on a single processor core and parallel execution of the 

same case on multiple processor cores (up to a maximum of 8) 

using ENI was compared. A typical modern engineer’s 

desktop has multiple cores in it. ENI uses TCP Socket based 

communication interface and thus its use is not restricted to a 

single multi-core machine. For example, several desktop PC’s 

with multiple cores can be interconnected using a TCP/IP 

LAN to provide an environment with hundreds of cores.  

Systems of different sizes were simulated. For example, 

simulations were carried out for a single 39 bus system, then 

the 39 bus system kernel was duplicated into a 78 bus system 

(see Fig. 3), then triplicated to a 117 bus system and so on up 

to 39 × 7 busses. These were implemented for: 

a) Single processor and single binary, as in Fig. 2 (A).  

b) Multiple binaries implemented on multiple processors 

using ENI for communication.   

Similar experiments were performed for 14, 78, 118 and 

300 bus systems. For example, for seven interconnected 300 

bus system kernels, a large 2100 bus system was executed 

sequentially on a single processor core and in parallel on seven 

processor cores. 

B.  Observations 

The execution for each simulation approach was measured. 

An index called the speed-up factor was used to determine the 

advantage afforded by the parallel implementation. This is the 

ratio of execution time with the parallel approach to the 

execution time for a single-processor implementation. The 

communication overhead was also measured. All experiments 

were done on an 8 core, 2.4 GHz Intel Xeon based system with 

16 GB memory. ENI communication was used on the local 

machine for consistency with multi-machine implementations 



even though a specialized, machine-local communication 

mechanism would have provided lower latencies. 

    1)  IEEE 14 Bus System 

Fig. 4 shows the results from simulating a network 

composed of several identical IEEE 14 bus system 

interconnected via t-lines using ENI on multiple  cores; and 

also on a single core. For the multi-core simulations, additional 

cores were utilized as the system size grew.  That is, the first 

test system was a single 14 bus system simulated on one core, 

the second was a 2 × 14 bus system, simulated on two cores, 

and so on, the last being a 7 × 14 bus system, simulated on 7 

cores.  Each core therefore simulates a single 14 bus system 

using a separate EMTDC solver.  Note that, each processor 

handles essentially the same computation load (each models 

the identical 14 bus kernel system). This provides a method of 

estimating the communication overhead - the difference 

between the time required for multi-core simulation, minus the 

time required to simulate the 14 bus system on a single core. 

Plotted as a function of the network size (number of 3-

phase buses) are the following: 

a) the single-core execution time (Fig. 4) 

b) total execution time on the multiple cores (Fig. 4)  

c) largest communication overhead including latency  

and wait times (‘b’- Execution Time for 1 kernel on 1 

core) (Fig. 4) 

d) speed up factor [ratio of  ‘b’ to ‘a’] (Fig. 5) 

The horizontal axis is the system size in numbers of 14 bus 

systems connected to form the larger system.  

 

 
Fig. 4.  14 Bus System Kernels: Parallel vs. Sequential Execution Times and 

Communication Overhead of ENI 

  

Fig. 5, shows that for this problem, the multiple cores do 

not provide any advantage as the speed-up factor is less than 

unity. This is because the solution time for any subsystem on a 

single core is about 0.5 s which is comparable to; or, as the 

total system size grows, even smaller than the communication 

overhead. Thus the communication time dominates and 

parallelization leads to no advantage. 

 

 

Fig. 5.  14 Bus System Kernels: Speed-up Factor 

    2)  IEEE 39 Bus System 

The experiments as discussed in the preceding sub-section 

were repeated, but this time with a larger 39-bus kernel 

replacing the 14 bus kernel. The well known IEEE 39 Bus 

System was used for the kernel system. Fig. 6 shows the 

results. The increase of the size and complexity of the kernel 

system simulated on each core now requires a longer 

simulation time as compared with the 14 bus system. Hence 

the communication overhead becomes a smaller fraction of the 

execution time. However, the communication overhead is still 

large such that single core outperforms the multiple core 

execution using ENI.  

 

 
Fig. 6.  39 Bus System Kernels: Parallel vs. Sequential Execution Times and 

Communication Overhead of ENI 

 

The speed-up factor is still below unity (Fig. 7), so the size 

of the 39 bus system is still not large enough to gain advantage 

using ENI on multiple machines.  

 

 
Fig. 7.  39 Bus System Kernels: Speed-up Factor 

 

    3)  IEEE 78 Bus System 

A 78 Bus kernel System was created by doubling the size of 

the 39 bus systems and the same tests as described above were 

conducted. As shown in Fig. 8, the single core execution and 

multiple cores execution time plots now essentially overlap 

each other, resulting in a near-unity speed-up factor as the 

system size increases.  

 

 
Fig. 8.  78 Bus System Kernels: Parallel vs. Sequential Execution Times and 



Communication Overhead of ENI 

 

The observations suggest that the 78-bus kernel size is the 

break-even system size, where the speed-up (shown in Fig. 9) 

due to the use of more cores exactly balances the disadvantage 

of increasing communication delay. Of course, the system cost 

is higher so parallelization is still ineffective.  Using a larger 

kernel size will result in useful improvements in overall 

simulation times, because the impact of the communication 

overhead will be outweighed by the computation savings due 

to parallelism. 

 

 
Fig. 9.  78 Bus System Kernels: Speed-up Factor 

 

    4)  IEEE 118 and 300 Bus System 

Experiments using much larger system kernels, such as 

IEEE 118 and IEEE 300 bus systems, were performed. As 

shown in Fig. 10, the parallel execution over ENI out-performs 

the single core execution and the speed-up factor now 

increases with the increase in the overall system size. 

However, the speed-up (see Fig. 11) is still not equal to the 

number of cores used as it would be with negligible 

communication overhead. 

 

 
Fig. 10.  118 Bus System Kernels: Parallel vs. Sequential Execution Times 

and Communication Overhead of ENI 

 

With a 300 bus kernel, as shown by the results plotted in 

Fig. 12, the communication overhead is very small compared 

to the execution time and the speed-up factor increases linearly 

and is essentially equal to the number of processors used, as 

shown in Fig. 13. This is close to the theoretical maximum 

speed-up that can be achieved. Thus, the use of t-lines to 

decompose a model provides good parallel speed-up as long as 

the resulting sub-models are reasonably large and hence 

compute intensive. 

C.  Partitioning a large system for ENI computing 

   The above analysis gives some guidance for partitioning a 

system for ENI computing. It is not always beneficial to 

partition it into several small systems to accommodate all the 

available cores. It is always important to make sure that the 

core size is larger than 78 (for the tested models) before such a 

partition is attempted. For example on an 8-core machine, a 

320 bus system  partitioned into four 80 bus systems each 

implemented on 1 core would require smaller simulation time 

than distributing it onto all 8 cores, even though the remaining 

4 cores would remain idle. 

 

 
Fig. 11.  118 Bus System Kernels: Speed-up Factor 

 

Other partitions may also yield higher speedups (e.g. 320 

bus system split into 3 approximately equal size systems 

implemented on 3 cores, or split into two 160 bus systems on 2 

cores). In such situations, the computation time would increase 

but the communication time would decrease. In general the 

optimum number of processors to be used depends on the 

relative proportion of the computing and communication 

times.    

 

 
 

Fig. 12.  300 Bus System Kernels: Parallel vs. Sequential Execution Times 

and Communication Overhead of ENI 

 

 
Fig. 13.  300 Bus System Kernels:  Speed-up Factor 

V.    TECHNOLOGY AND MODEL DEPENDENT ISSUES 

A.   Technology related issues 

  The results in the paper are technology specific. The 

critical system size of 78 could easily be smaller with 

improved technology that reduces communication overheads. 



Similarly, a change of model that required more or less 

computation time would change the critical system size. The 

implemented ENI interface was only tested on a multiple core 

computer environment. However, ENI also works in a grid 

based distributed computing environment where multiple 

computers (single or multi-core) are interconnected over a 

local area network (LAN). In that case inter-computer 

communication on the LAN would be slower than that 

between cores on the same computer. Hence a single ‘critical’ 

kernel size would not be possible to define, but as a rule, the 

average communication time would increase compared to that 

for multiple cores on a single computer, thereby requiring 

larger kernel sizes before becoming effective. It is also easy to 

visualize a hierarchical structure where smaller kernels are 

modeled on local cores, and the resulting larger systems are 

connected across the grid. For example, one may model 6 × 

118 bus systems on a local computer with say 8 cores, and 

connect via the LAN to another 6 × 118 bus system modeled 

on another computer with 8 cores, thereby minimizing the 

LAN communication.  

B.  Model related issues 

For purposes of experimentation and parametric analysis, the 

paper presented a contrived network of exactly identical 

kernels connected by t-lines. In an actual simulation, the kernel 

sizes would all typically be different resulting in various 

speed-up factors. Also, no power electronic devices such as 

HVDC converters or elements requiring iterative calculation 

such as surge arrestors were included in the test systems. With 

such systems, the computation time would increase for any 

kernel, and the critical system size would likely be smaller 

than 78. 

VI.  CONCLUSIONS 

This paper presented an electric network interface (ENI), 

enabling a large network to be split at transmission line 

interconnections so that each of the sub-networks could be 

simulated on a separate core. The approach allows cores on a 

single computer to be used for parallel processing and also 

allows cores on computers connected by a local area network 

(LAN) to be harnessed.  

Several simulation experiments were conducted using the 

ENI system and blocks or kernels of different sizes running on 

each of the cores. It was found that the effectiveness of the 

approach was limited to when the communication overhead 

was substantially smaller than the computation time on each 

processor. For the platform considered, a 78 bus kernel size 

was the breakeven point; only beyond which the speed-up due 

to parallel processing would warrant its use. For a 300-bus 

kernel size, the communication overhead became negligibly 

small compared to the computation time, and the speed-up 

factor was essentially equal to the number of cores, as is the 

case for full parallelism. 

 The 78 bus critical kernel size is based on modeling 

networks in which there are no power-electronic blocks 

requiring multiple switch operations or iterative computations 

such as those required for surge arrestors. The presence of 

such elements would increase the computing time for 

subsystems, thereby reducing the critical kernel size.  

The ENI computing environment will result in significant 

savings in the case of sufficiently large networks, if they are 

partitioned properly into effective kernel sizes based on 

available t-lines in the system. 
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