
Using Local Grid and Multi-core Computing in
Electromagnetic Transients Simulation

R. Singh, A. M. Gole, P. Graham J. C. Muller, R. Jayasinghe, B. Jayasekera and

 D. Muthumuni

 Abstract — This paper presents a method to implement the

Electromagnetic Transients (EMT) simulation algorithm on a

multi-core or grid processing platform. The simultaneous use of

multiple processors to divide and solve portions of the simulation

has the potential to speed up the overall simulation significantly.

However, communication bottlenecks can reduce its effectiveness.

This paper uses the Electric Network Interface (ENI), which is a

TCP based communication interface implemented using

transmission lines (t-lines) as natural interface ports. ENI allows

the sub-systems on either side of t-lines to be simulated on

separate processors on both local host and distributed computers

connected by standard local area networks (LAN). Using several

implementation examples, it is shown that the communication

bottleneck is significant when the execution time for each

subsystem is small, and can result in slower simulations than on a

single processor. However, with sufficiently large subsystems,

there is significant speed-up to the overall execution time.

Keywords: Electromagnetic Transients Simulation, Parallel

Computing, Grid Computing, Problem Decomposition, Electric

Network Interface (ENI).

I. INTRODUCTION

IGH Performance Computing (HPC) has always attracted

users, from various fields of study, who need to solve

large and complex computational problems. Often, depending

on the fields of study and the nature of the problem, practical

systems cannot be built before assessment of the robustness of

the system is accomplished. Simulated studies are a great way

of analyzing the accuracy, efficiency and robustness of any

such problem. In Power Systems, often, the nature and

R. Singh is with the University of Manitoba, Electrical Engineering

Department, Winnipeg, MB, Canada (Email: rsingh@mhi.ca).

A. M. Gole is with the University of Manitoba, Electrical Engineering

Department, Winnipeg, MB, Canada (Email: gole@cc.umanitoba.ca).

P. Graham is with the University of Manitoba, Computer Science

Department, Winnipeg, MB, Canada (Email: pgraham@cs.umanitoba.ca).

J. C. Muller is with Manitoba HVDC Research Centre, Winnipeg, MB,

Canada (Email: cmuller@pscad.com).

R. Jayasinghe is with Manitoba HVDC Research Centre, Winnipeg, MB,

Canada (Email: jayas@hvdc.ca).

B. Jayasekera is with Manitoba HVDC Research Centre, Winnipeg, MB,

Canada (Email: bathiyaj@mhi.ca).

D. Muthumuni is with Manitoba HVDC Research Centre, Winnipeg, MB,

Canada (Email: dharshana@hvdc.ca).

Paper submitted to the International Conference on Power

Systems Transients (IPST2013) in Vancouver, Canada July 18-20,

2013.

complexity of the problem leads to detailed models that

rapidly increase the size of the equations to be solved. Such

analyses, when performed using simulation software that is

built to use conventional computers (single CPU) take a long

time. With the advancement in multiprocessor computer

technologies and such computers becoming commodity

hardware, power systems simulation software needs to be able

to harness the multiple-core computing power generally

available. Electromagnetic transient (EMT) simulation uses

highly accurate models of power equipment [1]. These models

typically require small time steps, and are hence computation-

ally intensive. In EMT simulation transmission lines can be

used to separate a system into coupled sub-systems which can

then be solved on a single core each and exchange results at

the end of computation. This is due to the finite travel time of

information (imposed by the relativistic speed limit) across the

line. Hence, each of these subsystems can largely be solved

independently and thus in parallel. This property has been

exploited in the past to construct real-time simulators using

specialized hardware [2]. This paper discusses implementation

of a software parallelization on a combined multi-core/grid

platform. The methodology and performance of this approach

are reported in this paper.

II. GRID COMPUTING

The term “The Grid” [3] [4] [5] was suggested in the mid

1990's to denote the construction of a nation-wide computing

infrastructure analogous to the power grid. A very large scale

distributed computing system was envisioned connecting

geographically distributed machines and network resources

available at various institutions and organizations. Grid

computing systems, even at much smaller scale (as in this

paper), provide a distributed computing environment

consisting of shared distributed computing resources often

ranging from off-the-shelf personal computers (now with

multiple cores) to high-end clusters (specially designed

computers with high-end processors and communication

backplane). Such small-scale grid environments are easily

affordable to engineering organizations or can even be built

using LAN interconnected workstations already available.

In this paper ‘grid computing’ refers to the use of a parallel

algorithm run on locally distributed computing resources. This

could be one physical location (single machine with multiple

cores) or on several locations (multiple machines with one or

several cores). Although the examples shown were

implemented on a single computer with multiple cores, the

implemented algorithm can be used in both cases.

H

mailto:rsingh@mhi.ca
mailto:gole@cc.umanitoba.ca
mailto:pgraham@cs.umanitoba.ca
mailto:cmuller@pscad.com
mailto:jayas@hvdc.ca
mailto:bathiyaj@mhi.ca
mailto:dharshana@hvdc.ca

A. Parallel Computing using the grid

Parallel Computing is normally an integral part of grid

computing. By definition, it is the solution of a computational

problem by decomposing it into multiple parts and executing

each part simultaneously on a separate computing resource [6].

In contrast, in traditional sequential computing, the

instructions are executed one after the other on a single

processor. As task execution is sequential, even non-

interdependent tasks have to wait until the processor finishes

other tasks. This limitation is removed with parallel

processing, thereby often speeding up the computation. A

decade ago, expensive parallel computing machines having

several CPUs were used to implement such parallel

algorithms. Recently, with multiple core machines becoming a

commodity, more affordable parallel computing platforms are

now available.

There are several models of parallel computing, such as

shared memory based parallel programming and distributed

memory based parallel programming. In the former (shared

memory architecture), a number of processors use the same

shared memory. In the latter (distributed memory program-

ming model), each processor has its own memory. As the latter

is more common, and can be created by simply harnessing the

power of separate computers in a grid, it is the one used in this

paper. A block diagram of this architecture is shown in Fig. 1,

where separate but connected computers each model a process

and have their own dedicated memory. Within this architecture

style, two approaches are considered: In the first, a single

machine with multiple cores and very fast communication

links between them was used. However, the maximum speed-

up possible is limited to the number of cores (which is

relatively small). In the second approach, multiple machines

are connected over a local area network (LAN). Here, an

arbitrary number of parallel CPUs become available; however

this is at the price of reduced communication speed.

Fig. 1. Distributed Memory Architecture

For communication between the processes in an EMT

simulation, a message passing based interface is needed that

allows distributed processes to exchange electrical values with

one another. Fig. 1 also shows how, in distributed memory

systems, the data is localized to specific processors.

III. ADAPTING SIMULATION SOFTWARE FOR GRID COMPUTING

In this research we used the PSCAD/EMTDC [7] software

as the EMT solver. To manage the grid computing

environment the Xoreax Grid Engine (XGE) software [8] was

used. The grid engine consists of a coordinator (that schedules

the tasks) and several agents (that execute the tasks). The

computing environment used consisted of 40 cores (by

combining various desktop PCs) running at different clock

speeds connected over a standard local area network (LAN).

The interface to the grid engine is an XML script file that

describes the processes as tasks and how they are to be

scheduled on the grid. The grid coordinator controls the

scheduling of tasks on corresponding agent computers.

The EMT solver (EMTDC) is a sequential program. In this

paper, it was adapted for use in parallel computing

environment.

Each core in the grid is assigned one specific circuit to

solve, corresponding to a subsystem separated from other

subsystems by transmission lines (t-lines) or cables. The t-lines

introduce a natural time delay between sending of the

electrical signal to receiving it and hence become a natural

point to split the system into parts that may execute

concurrently. The split parts of a simulation can then each be

solved independently on a single processor core, with a

separate EMTDC instance running on each core. The

computations for the t-line or cable model itself are assigned to

the core simulating any one of the interconnected parts. A

communication interface had to be designed for the individual

parts running on separate processor cores to exchange values

of the electrical quantities at their interfaces. Grid coordination

software (Xoreax) was used to spawn the individual EMTDC

instances. Minor modifications were added to the PSCAD

coordinator to facilitate the message passing between the

processes. This is referred to as the Electric Network Interface

(ENI) discussed below.

A. Electric Network Interface (ENI)

The ENI is a TCP Socket based communication interface

developed for the EMTDC solver that enables communication

of electrical values between several sub-system simulations

each running on its own processor core. The concept is

illustrated in Fig. 2. Consider one of the examples used in this

paper – a hypothetical 273 bus system constructed by

connecting 7 IEEE 39 bus system kernels [9] including

generators, transmission lines and loads, connected via t-lines

to form a 273 bus system.

Fig. 2 (A) shows a traditional serial EMT solver consisting

of the models for 7 such IEEE 39 bus systems bundled in a

single executable program (i.e. “binary”) and running on a

single CPU. Fig. 2 (B) shows the implemented Parallel EMT

Solver where each of the seven IEEE 39 bus system models

are solved by one EMT Solver each of which is running on

one processor core. All the solvers are connected via ENI. The

t-line connections in the system define the placement of each

TCP-based ENI communication pipe between the solvers.

Fig. 2. Electric Network Interface

The connected EMT Solvers exchange electrical values

using this communication pipe. The t-line model can be solved

by either of the EMT Solvers at the ends of their ENI pipe.

Comparing Figs. 2 (A) and 2 (B) the parallelism of the

solution is evident. However, the parallelism does not

automatically imply faster simulation, because it also

introduces an additional layer of inter-processor communica-

tion overhead that did not exist in the serial solver.

Nevertheless, results presented later in the paper confirm that

such ENI based parallel simulation of a sufficiently large

power system will execute faster than a serial simulation.

IV. PARAMETRIC STUDIES

To test the effectiveness of ENI, simulation experiments

were conducted with standard IEEE test bus systems by

running the cases on a single processor core and on multiple

processor cores using the ENI communication interface. In

successive experiments, the complexity and size of the systems

were increased. The goal of these experiments was to analyze

the speed-up achieved in each test case and study the effect of

communication overhead involved when using ENI. It will be

shown that there is a critical size above which the computa-

tional advantage outweighs the communications overhead

resulting in faster simulations.

Fig. 3. Pictorial Representation of construction of larger systems using the

IEEE 39 Bus System as a kernel

The test cases for the experiments were constructed from

the standard IEEE 14 bus system [10], IEEE 39 bus system,

IEEE 118 bus system [10] and IEEE 300 bus system [10]. The

standard IEEE test systems used are as follows:

i. The IEEE-14 bus test system consists of 11 loads, 5

synchronous machines, 17 lines and 36 branches.

ii. The IEEE-39 bus test system consists of 39 loads, 10

synchronous machines, 46 lines and 95 branches.

iii. The IEEE-118 bus test system consists of 91 loads, 54

synchronous machines, 177 lines and 331 branches.

iv. The IEEE-300 bus test system consists of 195 loads, 69

synchronous machines, 304 lines and 674 branches.

Test systems of larger size were constructed from the

systems described above, by connecting several identical

systems using transmission lines. For example, Fig 3 shows the

construction of a 78 bus system by connecting together 2 IEEE

39 bus systems. Here bus 30 of one system is connected to bus

38 of the other using a t-line (dotted line), which indicates the

need for an ENI interface during parallel simulation.

A. Experiment Methodology

The experimental setup was as shown in Fig. 2. Fig. 2 (A)

represents the sequential execution of a single binary on a

single processor core and Fig. 2 (B) represents executing

multiple binaries in parallel using ENI on multiple cores.

To conduct the experiments, sequential execution of the

cases on a single processor core and parallel execution of the

same case on multiple processor cores (up to a maximum of 8)

using ENI was compared. A typical modern engineer’s

desktop has multiple cores in it. ENI uses TCP Socket based

communication interface and thus its use is not restricted to a

single multi-core machine. For example, several desktop PC’s

with multiple cores can be interconnected using a TCP/IP

LAN to provide an environment with hundreds of cores.

Systems of different sizes were simulated. For example,

simulations were carried out for a single 39 bus system, then

the 39 bus system kernel was duplicated into a 78 bus system

(see Fig. 3), then triplicated to a 117 bus system and so on up

to 39 × 7 busses. These were implemented for:

a) Single processor and single binary, as in Fig. 2 (A).

b) Multiple binaries implemented on multiple processors

using ENI for communication.

Similar experiments were performed for 14, 78, 118 and

300 bus systems. For example, for seven interconnected 300

bus system kernels, a large 2100 bus system was executed

sequentially on a single processor core and in parallel on seven

processor cores.

B. Observations

The execution for each simulation approach was measured.

An index called the speed-up factor was used to determine the

advantage afforded by the parallel implementation. This is the

ratio of execution time with the parallel approach to the

execution time for a single-processor implementation. The

communication overhead was also measured. All experiments

were done on an 8 core, 2.4 GHz Intel Xeon based system with

16 GB memory. ENI communication was used on the local

machine for consistency with multi-machine implementations

even though a specialized, machine-local communication

mechanism would have provided lower latencies.

 1) IEEE 14 Bus System

Fig. 4 shows the results from simulating a network

composed of several identical IEEE 14 bus system

interconnected via t-lines using ENI on multiple cores; and

also on a single core. For the multi-core simulations, additional

cores were utilized as the system size grew. That is, the first

test system was a single 14 bus system simulated on one core,

the second was a 2 × 14 bus system, simulated on two cores,

and so on, the last being a 7 × 14 bus system, simulated on 7

cores. Each core therefore simulates a single 14 bus system

using a separate EMTDC solver. Note that, each processor

handles essentially the same computation load (each models

the identical 14 bus kernel system). This provides a method of

estimating the communication overhead - the difference

between the time required for multi-core simulation, minus the

time required to simulate the 14 bus system on a single core.

Plotted as a function of the network size (number of 3-

phase buses) are the following:

a) the single-core execution time (Fig. 4)

b) total execution time on the multiple cores (Fig. 4)

c) largest communication overhead including latency

and wait times (‘b’- Execution Time for 1 kernel on 1

core) (Fig. 4)

d) speed up factor [ratio of ‘b’ to ‘a’] (Fig. 5)

The horizontal axis is the system size in numbers of 14 bus

systems connected to form the larger system.

Fig. 4. 14 Bus System Kernels: Parallel vs. Sequential Execution Times and

Communication Overhead of ENI

Fig. 5, shows that for this problem, the multiple cores do

not provide any advantage as the speed-up factor is less than

unity. This is because the solution time for any subsystem on a

single core is about 0.5 s which is comparable to; or, as the

total system size grows, even smaller than the communication

overhead. Thus the communication time dominates and

parallelization leads to no advantage.

Fig. 5. 14 Bus System Kernels: Speed-up Factor

 2) IEEE 39 Bus System

The experiments as discussed in the preceding sub-section

were repeated, but this time with a larger 39-bus kernel

replacing the 14 bus kernel. The well known IEEE 39 Bus

System was used for the kernel system. Fig. 6 shows the

results. The increase of the size and complexity of the kernel

system simulated on each core now requires a longer

simulation time as compared with the 14 bus system. Hence

the communication overhead becomes a smaller fraction of the

execution time. However, the communication overhead is still

large such that single core outperforms the multiple core

execution using ENI.

Fig. 6. 39 Bus System Kernels: Parallel vs. Sequential Execution Times and

Communication Overhead of ENI

The speed-up factor is still below unity (Fig. 7), so the size

of the 39 bus system is still not large enough to gain advantage

using ENI on multiple machines.

Fig. 7. 39 Bus System Kernels: Speed-up Factor

 3) IEEE 78 Bus System

A 78 Bus kernel System was created by doubling the size of

the 39 bus systems and the same tests as described above were

conducted. As shown in Fig. 8, the single core execution and

multiple cores execution time plots now essentially overlap

each other, resulting in a near-unity speed-up factor as the

system size increases.

Fig. 8. 78 Bus System Kernels: Parallel vs. Sequential Execution Times and

Communication Overhead of ENI

The observations suggest that the 78-bus kernel size is the

break-even system size, where the speed-up (shown in Fig. 9)

due to the use of more cores exactly balances the disadvantage

of increasing communication delay. Of course, the system cost

is higher so parallelization is still ineffective. Using a larger

kernel size will result in useful improvements in overall

simulation times, because the impact of the communication

overhead will be outweighed by the computation savings due

to parallelism.

Fig. 9. 78 Bus System Kernels: Speed-up Factor

 4) IEEE 118 and 300 Bus System

Experiments using much larger system kernels, such as

IEEE 118 and IEEE 300 bus systems, were performed. As

shown in Fig. 10, the parallel execution over ENI out-performs

the single core execution and the speed-up factor now

increases with the increase in the overall system size.

However, the speed-up (see Fig. 11) is still not equal to the

number of cores used as it would be with negligible

communication overhead.

Fig. 10. 118 Bus System Kernels: Parallel vs. Sequential Execution Times

and Communication Overhead of ENI

With a 300 bus kernel, as shown by the results plotted in

Fig. 12, the communication overhead is very small compared

to the execution time and the speed-up factor increases linearly

and is essentially equal to the number of processors used, as

shown in Fig. 13. This is close to the theoretical maximum

speed-up that can be achieved. Thus, the use of t-lines to

decompose a model provides good parallel speed-up as long as

the resulting sub-models are reasonably large and hence

compute intensive.

C. Partitioning a large system for ENI computing

 The above analysis gives some guidance for partitioning a

system for ENI computing. It is not always beneficial to

partition it into several small systems to accommodate all the

available cores. It is always important to make sure that the

core size is larger than 78 (for the tested models) before such a

partition is attempted. For example on an 8-core machine, a

320 bus system partitioned into four 80 bus systems each

implemented on 1 core would require smaller simulation time

than distributing it onto all 8 cores, even though the remaining

4 cores would remain idle.

Fig. 11. 118 Bus System Kernels: Speed-up Factor

Other partitions may also yield higher speedups (e.g. 320

bus system split into 3 approximately equal size systems

implemented on 3 cores, or split into two 160 bus systems on 2

cores). In such situations, the computation time would increase

but the communication time would decrease. In general the

optimum number of processors to be used depends on the

relative proportion of the computing and communication

times.

Fig. 12. 300 Bus System Kernels: Parallel vs. Sequential Execution Times

and Communication Overhead of ENI

Fig. 13. 300 Bus System Kernels: Speed-up Factor

V. TECHNOLOGY AND MODEL DEPENDENT ISSUES

A. Technology related issues

 The results in the paper are technology specific. The

critical system size of 78 could easily be smaller with

improved technology that reduces communication overheads.

Similarly, a change of model that required more or less

computation time would change the critical system size. The

implemented ENI interface was only tested on a multiple core

computer environment. However, ENI also works in a grid

based distributed computing environment where multiple

computers (single or multi-core) are interconnected over a

local area network (LAN). In that case inter-computer

communication on the LAN would be slower than that

between cores on the same computer. Hence a single ‘critical’

kernel size would not be possible to define, but as a rule, the

average communication time would increase compared to that

for multiple cores on a single computer, thereby requiring

larger kernel sizes before becoming effective. It is also easy to

visualize a hierarchical structure where smaller kernels are

modeled on local cores, and the resulting larger systems are

connected across the grid. For example, one may model 6 ×

118 bus systems on a local computer with say 8 cores, and

connect via the LAN to another 6 × 118 bus system modeled

on another computer with 8 cores, thereby minimizing the

LAN communication.

B. Model related issues

For purposes of experimentation and parametric analysis, the

paper presented a contrived network of exactly identical

kernels connected by t-lines. In an actual simulation, the kernel

sizes would all typically be different resulting in various

speed-up factors. Also, no power electronic devices such as

HVDC converters or elements requiring iterative calculation

such as surge arrestors were included in the test systems. With

such systems, the computation time would increase for any

kernel, and the critical system size would likely be smaller

than 78.

VI. CONCLUSIONS

This paper presented an electric network interface (ENI),

enabling a large network to be split at transmission line

interconnections so that each of the sub-networks could be

simulated on a separate core. The approach allows cores on a

single computer to be used for parallel processing and also

allows cores on computers connected by a local area network

(LAN) to be harnessed.

Several simulation experiments were conducted using the

ENI system and blocks or kernels of different sizes running on

each of the cores. It was found that the effectiveness of the

approach was limited to when the communication overhead

was substantially smaller than the computation time on each

processor. For the platform considered, a 78 bus kernel size

was the breakeven point; only beyond which the speed-up due

to parallel processing would warrant its use. For a 300-bus

kernel size, the communication overhead became negligibly

small compared to the computation time, and the speed-up

factor was essentially equal to the number of cores, as is the

case for full parallelism.

 The 78 bus critical kernel size is based on modeling

networks in which there are no power-electronic blocks

requiring multiple switch operations or iterative computations

such as those required for surge arrestors. The presence of

such elements would increase the computing time for

subsystems, thereby reducing the critical kernel size.

The ENI computing environment will result in significant

savings in the case of sufficiently large networks, if they are

partitioned properly into effective kernel sizes based on

available t-lines in the system.

VII. REFERENCES

[1] H. W. Dommel, “Digital Computer Solution of Electromagnetic

Transients in Single and Multiphase Networks,” IEEE Transactions on

Power Apparatus and Systems 88(4), pp. 388-399, 1969.

[2] RTDS Technologies Inc., Available at: http://www.rtds.com/ , February

2013.

[3] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid,”

International Journal Supercomputer Applications, 15(3), 2001.

[4] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The Physiology of the

Grid,” Open Grid Service Infrastructure WG, Global Grid Forum, June

22, 2002.

[5] I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure

Toolkit,” International Journal Supercomputer Applications,

11(2):115-128, 1997.

[6] Blaise Barney, “Introduction to Parallel Computing. Available at:

https://computing.llnl.gov/tutorials/parallel_comp/,” March 2010.

[7] EMTDC User’s Guide, 2003.

[8] Incredibuild Xoreax Grid Engine, Available at:

http://www.incredibuild.com/ , February 2013.

[9] T. Athay, R. Podmore, and S. Virmani, “A Practical Method For The

Direct Analysis Of Transient Stability,” IEEE Transactions on Power

Apparatus and Systems, Vol. PAS-98, No.2 March/April 1979.

[10] Rich Christie, “Power Systems Test Case Archive,” Electrical

Engineering, University of Washington, Available at:

http://www.ee.washington.edu/research/pstca/ , February 2013.

http://www.rtds.com/
https://computing.llnl.gov/tutorials/parallel_comp/
http://www.incredibuild.com/
http://www.ee.washington.edu/research/pstca/

