
Identification of the Sources of Transient 
Disturbances 

 
N. R. Watson and A. Farzanehrafat 

 
 
 Abstract-- This paper presents a newly developed three-phase 

transient state estimator based on the equations developed using 
numerical integrator substitution method (i.e. using Dommel’s 
method of substituting the Trapezoidal rule into the integral 
equations representing components to form a difference 
equation). This is faster than the previous state variable 
formulation. This paper gives an overview of the component 
models used, and shows how the measurement matrix is built up 
using measurements and knowledge of the electrical network 
(encapsulated in these component models). The IEEE 14 busbar 
test system is used to illustrate the use of the transient state 
estimator. 
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I.  INTRODUCTION  

RANSIENT analysis involves modelling the electrical 
network and disturbance to determine the transient that 

will result. Transient studies (using programs such as 
EMTDC, EMTP, ATP,…etc) are used for planning studies to 
ensure adequate performance as well as diagnostically to 
investigate and understand events after they have been 
experienced. This paper however presents a transient state 
estimator (TSE) which is the reverse of the traditional 
transient analysis algorithm. The transient state estimator uses 
recorded transient information and knowledge of the electrical 
network to identify the type of event and location of the 
source of the disturbance and is an extension to the well-
known fundamental-frequency state estimation used in control 
rooms. Transient state estimation is in its infancy however, but 
it holds great promises, particularly with the Smart Grids 
initiative being promoted worldwide. The major stumbling-
block with algorithms such as transient state estimation has 
been the need of sufficient high quality data which has been a 
disincentive to developing such algorithm. The need to 
modernize the electrical grid to enable it to meet the needs of 
the future is well accepted. This has led to the Smart Grid 
concept as a pathway of increasing the smartness of the 
electrical grid so as to meet the demands of the future. Part of 
this involves two-way communication infrastructure which 
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will make a large amount of data available in the future. This 
entwining of the electrical network with a communication 
system promises abundant data in the future for such 
algorithms to use. 

An earlier contribution demonstrated for the first time a 
transient state estimator based on a state variable formulation 
[1]-[3]. This paper presents a newly developed three-phase  
transient state estimator based on the equations developed 
using numerical integrator substitution (NIS) method (i.e. 
using Dommel’s method of substituting the Trapezoidal rule 
into the integral equations representing components to form a 
difference equation [4]). This is faster than the previous 
formulation and was first demonstrated on a simple single-
phase system [5]. This paper details the component models 
used and shows how the measurement matrix is built up using 
measurements and knowledge of the electrical network 
encapsulated in these component models. This is followed by 
an illustrative example (using the IEEE 14 busbar test system) 
and final conclusions and future work are discussed. 

II.  TRANSIENT STATE ESTIMATION 

Power Quality State Estimation (PQSE) is a class of state 
estimation techniques of which TSE is one particular example. 
Despite the different formulations and quantities they use, the 
common feature is that they are applying state estimation 
techniques to power quality problems. Harmonic State 
Estimation (HSE) and identification of harmonic sources, 
Transient State Estimation (TSE) and Voltage Dip/Sag State 
Estimation (VDSE), are all types of PQSE. 

The general form of the state estimation problem can be 
expressed as [6]: 

 z H x       (1) 

where z is a (m×1) vector of measured quantities and x is a 
(n×1) vector of state variables (unknown quantities) for which 
the equation must be solved. H is a (m×n) measurement 
function relating the known quantities to state variables and 
z   is the vector of measurement errors.  

Equation (1) is known as the measurement equation and 
links the measured quantities ( z ) to the state variables ( x ). 

For TSE, nodal voltages and branch and load currents are 
measured quantities and the state variables are nodal voltages.  

A.  Dynamic Model 

To build a measurement equation for TSE a dynamic model 
representing the system is needed. An earlier contribution 

T



used a state variable formulation and inductor currents and 
capacitor voltages as state variables. This work uses the 
Numerical Integrator Substitution (NIS) method Dommel 
proposed. The state variables are the node voltages (three 
nodes per busbar as a three-phase representation). The 
differential equations are changed to difference equations for 
each component and a system model developed by using 
nodal solution. i.e. 

  ( ) ( ) ( )HistorysG v t i t I t     (1) 

where [G] is the conductance matrix, v(t) is the vector of 
nodal voltages, is(t) is the vector of external current sources 
and IHistory(t) is the vector current sources representing past 
history terms. Rather than using for the inductor history term: 

 ( ) ( ) ( ) ( )
2History k m

t
I t i t t v t t v t t

L


              (2) 

where L is the inductance of the inductor connected between 
nodes k & m. An alternative form is used, i.e.: 

( ) 2* ( ) ( )History HistoryI t i t t I t t                   (3) 

Although (2) and (3) are mathematically equivalent, (3) is 
slightly more efficient. Moreover, the measurements used in 
the test system are predominantly current measurements. 

B.  Component Models 

The models developed for electromagnetic transient 
simulation can, with refinements, be directly used in TSE 
algorithm [7]-[12]. This section gives a brief sketch of two 
basic models. The nodal equation for a single-phase nominal 
-model transmission line is: 

( ) ( ) ( )( )

( ) ( ) ( )( )
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   (4) 

Where ( )CshI t t   & ( )CrhI t t  are the history terms for 

the shunt capacitance (sending and receiving end 
respectively). ( )RLhI t t  is the history term for the series 

impedance and RLG is its conductance. ( )sri t  and ( )rsi t are 

the terminal currents in the line at the sending and receiving 
ends, respectively. 

 
Fig. 1. Three-phase nominal -model of transmission line. 

 

The extension to a three-phase transmission line model 
(shown in Fig. 1), uses a matrix format for the lumped line 
parameters to represent the self & mutual coupling between 
phases. Therefore, the only difference is that conductance 

scalar parameters in (4) must be replaced by the appropriate 
3×3 matrices. If symmetrical component data is available, this 
can be accommodated. Considering a the impedance matrix: 
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Hence the matrix equation for the nominal –model is: 
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Three-phase transformers are modelled by three ideal 

single-phase transformers represented by a mutual inductance 
coupling between windings (6). Hence the fundamental 
equation is:  
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where L = L1+a2L2, is leakage inductance between primary 
and secondary windings as measured from primary winding. 
Applying Trapezoidal rule to (6) and rearranging equation to 
the form of (1) yields: 
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where the history terms can be calculated as: 
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This can be extended to a three-phase transformer by 
considering the transformer configuration. Connection 
matrices are used to derive the nodal equation based on coil 
configuration (e.g. delta/star, star/star,… etc). Regardless of 
the transformer configuration the three-phase transformer can 
be represented by the matrix equation:  

( ) ( ) ( - )  
windingwinding winding winding HistoryG v t i t I t t  (8) 

The transformer configuration is accommodated by 
considering the relationship between the winding currents and 
voltages, and the nodal currents and voltages. Consider for 
example a three-phase delta/star-g transformer. The 
relationship between node quantities and winding quantities, 
with all nodal voltages being with respect to the reference 
earth, can be defined as follows: 

 winding Nodev C V     (9) 

 T
winding Nodei C I     (10) 

where C, connection matrix, for a delta/star-g configuration is: 



1 1 0 0 0 0

0 1 1 0 0 0

1 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
  
 

  
 
 
 
 

C     (11) 

Substituting the winding parameters with nodal parameters 
in (8) yields: 

  1
( ( ) ( ))
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T
winding Node Node HistG CV C I t I t t


      (12) 

Multiplying both sides by CT gives: 

( ) ( )
Node

T
winding Node Node HistoryC G CV I t I t t     (13) 

The term CT.Gwinding.C is the nodal conductance matrix for 
a three-phase transformer and it is added to the appropriate 
entries of the system nodal conductance matrix ([G]). 

C.  Formation of Measurement Equation 

Each measurement point results in one equation being 
added to the measurement equation by adding the appropriate 
information from the dynamic model into H, to form the TSE 
measurement equation. Table I indicates how the H matrix 
entries are built from elements of the G matrix (for current 
measurements) and ones & zeros (for voltage measurements). 
For example, when a node voltage is measured the 
corresponding row in the H matrix will be zero except at the 
position corresponding to the node that was. A branch current 
measurement will add a row to H consisting entirely of zeros 
except at the locations associated with the sending and 
receiving end nodes, which will contain the appropriate 
conductance entries from the H matrix.  

 
TABLE I 

MEASUREMENT EQUATION CONSTRUCTION 

Measurement 
Type 

Measurement 
Vector Entry (z) 

Measurement 
Matrix H 

Phase Voltage vk(t) [0...0,1,0...0] 
Branch Voltage vk(t) – vm(t) [0..0,1,0..0,-1, 

0…0] 
Branch Current ikm(t)-IHistory(t) [0...0,Geff,0...0

, -Geff , 0...0] 

D.  Solution of Measurement Equation 

The solution methods available depend on the rank of the 
H matrix and whether the system is under-determined or over-
determined, or just observable. Singular Value Decomposition 
(SVD) is the solution method of choice due to; its ability to 
solve under-determined systems and give observability 
information, as well as its robustness [6][13]. SVD factors the 
measurement matrix, i.e.: 

   TH U W V   (14) 

where U (m×n) and VT (n×n) are orthogonal matrices and 
W (n×n) is a diagonal matrix with entries of singular values of 

H. This factorization is employed to compute a pseudo-inverse 
of the measurement matrix H, and use this to calculate the 
state variables:  

    1 T
x V W U z

   (15) 

III.  APPLICATION OF TSE 

A.  Test System 

The 60 Hz IEEE 14 busbar test system [14] is used to 
demonstrate the capability of TSE. The measurement points 
are illustrated in Fig. 2. With this measurement placement the 
system is unobservable as there are insufficient measurements 
to determine all state variables. Busbar 1 is unobservable. A 
line-to-ground fault is applied at busbar 13. A line-to-ground 
fault is simulated as general it is a more testing case for a 
three-phase algorithm (testing the self and mutual impedance 
terms). The IEEE 14 busbar system was simulated in 
PSCAD/EMTDC and the results taken as actual measure-
ments. The power system components have been modelled 
according to the modelling guidelines for voltage dip studies 
(Table VI of [11] & [8]-[10]). 

The PSCAD/EMTDC results at the measurement locations 
are then fed into the TSE algorithm and the TSE estimates the 
voltages and currents at the unmonitored locations. The 
estimates are inspected and compared to the actual. 

A 50 µs time-step was used for the PSCAD/EMTDC 
simulation and hence the component models used for 
developing the TSE also used a 50 µs time-step. 

B.  Simulation Results 

Figs. 3-7 show representative samples of the results from 
application of the TSE algorithm. As can be seen there is a 
very good match between estimated and actual for all busbars 
except busbar 1 which is unobservable. From the voltage 
depression at the different busbars it is easy to identify busbar 
13 as the location of the fault. Moreover the singular values 
identify the unobservable busbar, however, ever from the 
solution the unobservable busbar is obvious as SVD gives the 
minimum norm solution (hence zero if unobservable). 
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Fig. 2.  IEEE 14 busbar test system. 
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Fig. 3.  Estimated and actual voltage at busbar 13. 
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Fig. 4.  Estimated and actual voltage at busbar 12. 
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Fig. 5.  Estimated and actual voltage at busbar 5. 
 

Close inspection of difference between estimated and 
actual at the fault location (displayed in Fig. 8) shows some 
small numerical oscillations. To understand these oscillations 
further the measurements are cut back to voltage measure-
ments at busbar 6 and line currents in line 6 to 13 only, for 
this IEEE 14 busbar system. Figs. 9 & 10 display the 

comparison and error for busbar 13 in this case. An oscillation 
is evident around the true value, although of small magnitude 
and will not affect the ability to identify the source of the 
transient disturbance. As TSE uses the Trapezoidal rule to 
discretize the differential equations to form difference 
equations the same numerical issues already encountered with 
simulation with abrupt changes are to be expected.  
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Fig. 6.  Estimated and actual voltage at busbar 3. 
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Fig. 7.  Estimated and actual voltage at busbar 1. 

0.26 0.28 0.3 0.32 0.34 0.36 0.38
-20

0

20

Difference  V
13

0.26 0.28 0.3 0.32 0.34 0.36 0.38
-0.5

0

0.5

V
ol

ta
ge

s 
(k

V
)

0.26 0.28 0.3 0.32 0.34 0.36 0.38
-0.5

0

0.5

Time [s]

 
Fig. 8.  Error in busbar 13 voltage estimate. 
 



To verify that this is due to the well documented numerical 
oscillation that occurs with Trapezoidal rule a rectangular 
integrator (that is the backward Euler method) was substituted 
in instead of the Trapezoidal rule. The same IEEE 14 busbar 
system is used. Figs. 11 & 12 display the comparison and 
error, respectively, for busbar 13 using this new discretization 
for the TSE. Figs. 11 & 12 do not show this oscillation and 
give extremely good results. There is no tendency for 
numerical oscillations as would be expected for the backward 
Euler method.  
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Fig. 9.  Estimated and actual voltage at busbar 13 (Trapezoidal Integrator). 
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Fig. 10.  Error in busbar 13 voltage estimate (Trapezoidal Integrator). 

 
Another more robust and accurate technique is the root-

matching method [10]. This method is extremely robust and 
accurate with no tendency for numerical oscillations. 
Applying the root-matching technique to form a new TSE 
gives the excellent results shown in Figs. 13 & 14. This test 
involved applying the root-matching method to the 
transmission line model as a line current measurement was 
used. Although the root-matching technique it is already used 
for the Continuous System Model Functions (CSMF) toolbox 
in PSCAD/EMTDC it is not used for the other electrical 
components. For a general TSE further working is needed to 
adapt the other component models to use the root-matching 

approach. 
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Fig. 11.  Estimated and actual voltage at busbar 13 (rectangular integrator). 
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Fig. 12.  Error in busbar 13 voltage estimate (rectangular integrator).  
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Fig. 13.  Estimated and actual voltage at busbar 13 (root-matching). 
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Fig. 14.  Error in busbar 13 voltage estimate (root-matching). 

IV.  CONCLUSIONS 

The concept of transient state estimation using numerical 
integrator substitution formulation has been presented. The 
basic three-phase component models have been given and 
illustrative results using the IEEE 14 busbar test system 
presented. The results demonstrated that the technique is well 
suited for identifying the sources of transient disturbances. 
The TSE method based on NIS works very well but is subject 
to the same limitations already encountered in electromagnetic 
transient simulation.  

Oscillations around the true values were observed on some 
of the estimated voltage waveforms and these were verified to 
be due to numerical noise inherent in the Trapezoidal rule at 
sharp discontinuities. In order to verify this two new TSE 
were formed by reformulated using backward Euler integrator 
and root-matching technique and the performance of these 
new TSEs were verified. This is the first time a TSE using 
backward Euler integrator and root-matching technique have 
been demonstrated. Root-matching is particularly promising 
due to its characteristics and even lower computation (as the 
exponential term can be calculated prior to time-stepping) 
than the traditional NIS methods. 

It has been demonstrated that TSE is a powerful tool in 
identifying the source location of transient disturbances. One 
of the main barriers for practical implementation of TSE is the 
present lack of suitable measurement data (hence the need to 
use simulation data in this paper). However, as Smart Grids 
evolves the number of measurements is not likely to be the 
barrier it once was due to the massive amount of data that is 
becoming available. 

Since TSE is in its infancy compared to electromagnetic 
transient simulation there are many avenues open for 
improvement. More work is needed to improve the models 
further. In particular incorporating travelling-wave 
transmission line model is important to increase the TSE’s 
applicability to transmission systems. Early performance tests 
with measurement noise have been encouraging and more 
work on this (and bad-data detection and removal) are needed. 

Also testing with high impedance faults is required. 
The use of root-matching technique to develop a new TSE 

has been demonstrated and this needs developing further. 
However, if the Trapezoidal integrator is retained chatter 
removal methods need to be incorporated to overcome 
numerical noise. In the future incorporation of load current 
measurements without the need to know the load composition 
could be achieved to add more information (as this has already 
been accomplished for harmonic state estimation).  
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