
Electromagnetic Transient Simulation of Large-

Scale Electrical Power Networks Using Graphics

Processing Units

Jayanta Kumar Debnath, Aniruddha M. Gole, Wai-Keung Fung

 Abstract-- This paper presents the application of graphics

processing unit (GPU) based computing to speed-up

electromagnetic transient (EMT) simulation of large power

systems. In this scheme the GPU is mainly deployed to perform

the computationally intensive part of the simulation in parallel

using its built-in massively parallel processing cores, and the

CPU (conventional central processing unit) is assigned for

sequential jobs like, flow control of the simulation, temporary

memory storage of output variables and so on. To demonstrate

the methodology, the paper uses an electromagnetic transient

simulation model of the IEEE 39 Bus as the basic kernel. Larger

test cases are created by interconnecting several IEEE 39 Bus

systems. Results show that with a hybrid environment consisting

of GPUs and CPUs, simulation time is greatly reduced compared

to the traditional CPU-only implementation.

Keywords: Electromagnetic transient simulation, GPU-

computing, parallel processing, Power systems simulation,

CUDA-C programming.

I. INTRODUCTION

ower systems are complex networks consisting of diverse

components such as generators, loads, transmission lines,

transformers, power-electronic switches, etc and generally

occupies vast geographical area. Analytical solution of these

large and complex systems is usually impossible. Therefore,

numerical simulation is often the only way to obtain solutions

[1], [2], [3]. Several different simulation tools, each with its

own applicable frequency bandwidth, can be used for the

design and operation of modern power systems [1], [4], [5],

[6], [7]. Electromagnetic transient (EMT) simulation is most

comprehensive tool, and models the full range of frequencies,

from very slow transients in electric machines to fast

transients such as those caused by circuit breaker operations,

power electronic converters and lightning [2], [3], [8], [9],

[10]. In early days (i.e. before the digital computer based EMT

simulations), transient network analyzers (TNAs) [9], [11],

J. K. Debnath is currently a Ph.D. candidate in the Department of ECE,

University of Manitoba, Winnipeg, Manitoba, Canada (e-mail:

jayanta072@yahoo.com).

A. M. Gole is a distinguished professor and NSERC industrial research

chair in the Department of ECE, University of Manitoba, Winnipeg,

Manitoba, Canada (e-mail: Aniruddha.Gole@ad.umanitoba.ca).

W. K. Fung is with the Department of ECE, University of Manitoba,

Winnipeg, Manitoba, Canada (e-mail: fungwaikeung@gmail.com).

Paper submitted to the International Conference on Power Systems

Transients (IPST2013) in Vancouver, Canada July 18-20, 2013.

[12] were used for EMT simulation. With the introduction of

digital computers, many techniques have been used to solve

the electromagnetic transient related problems. The digital

computer based electromagnetic transient simulation program

(EMTP) for multi-node networks was first introduced by H.W.

Dommel [2], [3], [9], [13]. In comparison to other available

modeling approaches, EMT simulation [3], [8], [9], [11], [13]

models power system equipment in its greatest detail. Due to

the inherent complexity and computational intensity of EMT

simulations, it was originally used to simulate a small

manageable subset of the larger network. However EMT

simulation is being increasingly applied to study larger power

networks with fast acting dynamic devices. Continuous

increase in demand for interconnection of systems has lead to

the creation of extremely large and interconnected power

systems [3], [9], [14]. EMT simulation of such a complex

network using CPU-based simulators is time consuming and

simulation time can become excessively large. Many attempts

are being made to reduce the simulation times, such as use of

supercomputers, pc-clusters, etc [6], [15], [16], [17], [18].

Although improvements in simulation performance can be

obtained, major drawbacks such as the cost of installation

(especially in case of supercomputers) and inter-processor

communication (especially in case of PC-clusters), are still of

great concern. The approach presented in this paper deploys

graphics processing units (GPUs) [19], [20], as a cost effective

and high performance alternative [21], [22], [23] for EMT

simulation of large scale power systems. In this approach a

standard computer with a compute unified device architecture

(CUDA) [19] enabled graphics card (GPU) is used to form a

hybrid environment for simulation. In this simulation process,

part of the EMT simulation with massive parallelism is

offloaded to the GPU, which results in massive performance

gain [19], [21], [22], [23], [24]. A particularly attractive

feature of this approach is that GPUs are very inexpensive as

they are mostly used in standard desktop computers for

gaming and animation related applications. This provides the

possibility of having a high power but extremely economical

simulator.

II. OVERVIEW OF GPU ARCHITECTURE AND GPU BASED

COMPUTING

GPUs are normally used in standard computers for display

purposes with support for high performance gaming and

animation related applications [24], [25], [26]. GPUs have a

powerful graphics engine, which is highly parallel in

P

architecture and is programmable for general purpose

computing [26], as shown schematically in Fig. 1. Fig. 1

shows the early (i.e. easier to understand) version of the GPU

(G80) architecture. More modern GPU architectures may be

found in [19]. G80 version of the GPU consists of 8-streaming

multiprocessors (SMs). Each SM consists of 16-streaming

processors (SP). Each SP consists of an arithmetic logic unit

(ALU) capable of performing simple arithmetic operations

such as addition, multiplication, division, etc as well as

different logic operations. To perform more complex functions

such as trigonometric, exponential or logarithmic functions

there are two “super function” (SF) units in each SM.

Advantage in speed can be achieved using the limited shared

memory (which is equal to 16 kB in case of Geforce GTX 590

GPU) on each SM, shared between the 8 SPs. All of these

streaming processors are capable of performing operations in

parallel. More details on GPU architecture may be found in

[19], [24], [25], [26]. The GPU accelerates computationally

intensive applications by operating in a single-instruction

multiple-thread (SIMT) mode [19], [24], [25]. In this SIMT

mode, the same instruction is executed in parallel by multiple

threads that run on identical cores [19], [24], [25].

Fig. 1: Schematic of Graphics Processing Unit (GPU) architecture [24].

Fig. 2 shows the schematic interconnection of a GPU with

a CPU. In this figure, both the CPU and the GPU have

multiple cores. Typically a GPU has significantly larger

number of cores than a CPU. For example the NVIDIA

Geforce GTX-590 has 512 cores and an Intel core i7 CPU has

only 4 cores. Researchers have used GPUs for general purpose

computations such as real time computer vision, fluid

dynamics simulations and molecular dynamics simulations

[26] and electromagnetic transient simulations [21], [22].

CUDA is NVIDIA's parallel computing architecture [19],

[24], [26] and CUDA based C programming is used in this

work. A general CUDA-program has two parts, namely (1) a

serial/sequential part and (2) parallel part. On the sequential

part, no parallelism exists and the code is executed on the

CPU. The second portion with massive data parallelism is

implemented on the GPU.

Fig. 2: Schematic of Graphics Processing Unit (GPU)-mounted PC

architecture.

Fig. 3 shows the schematic execution of a typical CUDA

program. The execution starts with the sequential parts

executed on the CPU, and whenever a kernel is launched the

execution is transferred to the GPU and instructions specified

on this kernel are implemented in parallel. The CUDA-C

compiler differentiates between the CPU job and the GPU job

during the compilation process. The GPU portion of the

program normally starts with reserved keywords, commonly

known as kernels. A kernel function generates a large number

of blocks and threads to implement data parallelism. In

general a kernel function specifies the number of blocks and

threads to be generated during its launching to execute the

portion of the program in parallel. Additional details on

CUDA-programming models and example programs with

CUDA-enabled devices may be found in [19], [24], [25], [26].

Fig. 3: Schematic of execution of a Compute Unified Device Architecture

(CUDA) program [24].

III. OVERVIEW OF EMT SIMULATION

The electromagnetic transients simulator developed in this

paper presently contains typical power system component,

including lumped elements such as resistances (R),

capacitances (C), inductances (L), coupled circuits (M) [3];

and synchronous machines. Dommel’s approach [2] is used to

convert the L and C elements to Norton equivalent circuit

forms consisting of conductances and current sources as

shown in Fig. 4. Similar equivalents may be used for the

coupled circuit and distributed parameter elements, but have

multiple ports instead of the single port for the Ls and Cs.

These equivalent circuits allow the calculation for node

voltages (typically) in a given time-step from knowledge of

the sources and ‘history’ terms, which represent cur-

rents/voltages from the previous time-step.

Fig. 4: Schematic equivalent circuit for (a) Inductor and (b) Capacitor

following Trapezoidal Rule as proposed by Dommel [2], [3].

In this work the synchronous machine is modeled as

interfaced three-phase current source following the method

mentioned in [5]. Other power system equipment such as

power electronic converters, etc, can also be represented in

this formulation as time dependent Norton Equivalent sources

[2], [3], [9], but as yet have not been included in the program.

The EMT simulation process starts with time, t = 0 and with a

time step of ∆t. The first step is to replace all the equipment

with their equivalent current source/conductance models. The

resultant resistive network is solved by nodal analysis [3], [7],

[13], [17], [27]. The resulting mathematical representation

(using Nodal analysis [27]) has the following general form at

any time t:

[] [] [] [] (1)

Where:

[Y] is the nodal admittance matrix.

[V] is the node voltage vector and [J] the vector of source

currents at time t.

[IH] is the vector of history currents.

Equation (1) can be solved for the unknown nodal voltage

vector [] [] [] . Triangular decomposition

rather than explicit inversion of [Y] may be used in the

solution. Once [V] is known, all currents and voltages can be

computed, and the time variable t advanced by ∆t. The new

values become the history values for the next time-step. The

process continues until the time t reaches the finish time.

A. Exploiting Parallelism

EMT simulation is a highly parallel computation process

[15]. One source of parallelism arises due to the finite travel

time for electromagnetic signals across transmission lines. If

the travel time is larger than the time-step ∆t, two networks

connected by a transmission line can be solved independently

in parallel, because in any given time-step, voltages or

currents calculated in one of the networks cannot immediately

affect events in the network. This approach has been studied

earlier and is the basis for many of the real-time simulator

algorithms [28]. However, we do not discuss this obvious

parallelism in this paper, rather we see if computation gains

can be made in the solution of a single subsystem using GPU

computing. Any transmission lines present are included for the

moment, as pi-sections in the same subsystem.

Many attempts have been taken to speed up EMT-

simulation using parallel processing techniques such as

mentioned in [15], [18], [29], [30]. Due to the involvement of

large number of computations involving floating point

variables, matrix vector multiplication consumes a large

amount of the time in EMT-simulation. For example, for a

system with 390 buses (duration of simulation was 10 sec) on

the Intel core i7 processor, matrix vector multiplication

required 644.18 seconds, where the total time for the whole

simulation was only 686.11 seconds, details on this will be

presented later. For larger systems simulation time becomes

worse. In these simulations there were only sporadic openings

of switches, as is the case for switching transient studies in ac

networks. If power electronic devices are present, the

switching events become large, and the corresponding re-

factorization times would be large, but this case is not

considered in this paper. This matrix vector multiplication is a

highly parallel task [30], ideally suited for the GPU. The same

system of 390 buses required only 23.39 seconds to finish the

matrix vector multiplication and the total simulation time was

reduced to 27.81 seconds from the previous 686.11 seconds.

Similar parallelism exists in the computation of the history

terms and transmission lines (pi-section) related computations.

These highly parallel jobs are also positively affected by the

power of GPU-computing.

IV. EMT SIMULATION USING GPU-COMPUTING

Special architecture of the GPU makes it capable of

handling massively parallel computations on its onboard

parallel processors [26]. Mainly, there are two commonly used

programming-packages to program GPUs for general purpose

computing:

 OpenCL [24] - an industry-wide standard with

programming style that resembles OpenGL;

 CUDA for C/C++/Fortran, which is specific to

NVIDIA GPUs [19].

Fig. 5: Schematic of parallelism in matrix-vector multiplication using

different blocks.

In this work the CUDA-C programming is used. In GPU-

computing, GPU acts as a helper to the main CPU. All the

control instructions originate on the CPU and are passed to

the GPU, which is only responsible for executing these

instructions. Due the communication overhead, there is some

lost time. Due to this inherent time-offset, using the GPU for

all computations is contra-recommended where small

networks are concerned, [24], [26]. This is because the

communication overhead is large as compared to the

computation time.

On the other hand, when the computation effort becomes large

on the GPU as is the case with larger networks, performing

matrix-vector multiplication on the GPU shows extensive

speed up in computations [21], [22]. Reference [21], shows

that if only the matrix-vector multiplication is performed on

the GPU, at-least a network with 60 nodes is required for the

GPU based computing to be faster than CPU based

computing.

A. Matrix-Vector Multiplication on the GPU

In this case, the whole matrix and the vector is divided into

different blocks (as shown in Fig. 5), taking few rows in each

block. The number of threads (or rows) per block on the GPU

is fixed by the CPU during the launching of the kernel (which

is ultimately fixed by the programmer). Special keywords such

as threadIdx.x and blockIdx.x are used to identify different

blocks and threads in the computation. More details on

parallel implementations of the matrix-vector multiplication

may be found in [24], [25], [31].

𝝍𝒇

𝝍𝒒

𝝍𝒅

𝒊𝒅
𝒊𝒇
′ =

𝑳𝒎𝒅 + 𝑳𝒂 𝑳𝒎𝒅
𝑳𝒎𝒅 𝑳𝒎𝒅 + 𝑳𝒂

 𝟏

𝝍𝒅
𝝍𝒇
′

𝒊𝒅 = [𝑳𝒎𝒒 + 𝑳𝒂] 𝟏(𝝍𝒒)

id iq i
’
f

𝒅𝝍𝒅
𝒅𝒕

= 𝒗𝒅 𝒊𝒅𝑹𝒅 𝝎𝝍𝒒

𝒅𝝍𝒒

𝒅𝒕
= 𝒗𝒒 𝒊𝒒𝑹𝒂 + 𝝎𝝍𝒅

𝒅𝝍𝒇
′

𝒅𝒕
= 𝒗𝒇

′ 𝒊𝒇
′ 𝑹𝒇

′

[T(θ)]

va

vb

vc

𝒅𝝍𝒅
𝒅𝒕

𝒅𝝍𝒒

𝒅𝒕

𝒅𝝍𝒇
′

𝒅𝒕

i0

[T(θ)]
-1

ia

ib

ic

Fig. 6: Schematic of the generator model as used in this work [3, 5].

B. Simulation of Synchronous Generators on the GPU

Fig. 6 shows the schematic of the generator model (as used

in this work). This generator related computations are

performed in the dq0 domain. Details on generator modeling

may be found in [3], [5], [32]. Generator related computations

are also highly parallel and suitable for implementation on the

GPU. Typically generators require three parallel threads (for

three phase system) and each generator may be assigned one

block to perform the computations in parallel.

C. History current related computations on the GPU

Trapezoidal rule based numerical integration technique for

power systems [2], [3], introduces history current terms for

inductive and capacitive branches (as shown in Fig. 4). These

history current computations are also highly parallel. To

implement these computations on the GPU three threads are

assigned for a three-phase system for each inductive or

capacitive element. Several of these inductive or capacitive

branches are combined in one block to perform the

computations in parallel.

D. Current vectors updating on the GPU

EMT simulation requires updating the nodal injection

current vector in each time step. This part of the admittance

matrix based EMT-simulation has the least amount of

parallelism. For an N phase power system N different threads

could be launched to perform these computations in parallel

on the GPU. It has been shown in [22] that performance is

higher in case all the computations performed on the GPU.

Even though the degree of parallelism is small, keeping the

calculation on the GPU avoids communication overhead in

passing information to the CPU. Hence, in this work all

current vectors related computations are performed on the

GPU.

Fig. 7: Schematic of IEEE 39 Bus system.

V. SIMULATION RESULTS

Details of the hybrid platform (used in this work) are listed

in Table I. The computer used in this simulation has an Intel

Core i7 2600K processor (3.40GHz) with total RAM of 16GB.

The GPU is NVIDIA GTX GeForce 590. The GPU is

connected to the CPU through a built-in PCIe bus on the

motherboard. The operating system of the machine is Linux

(distribution Fedora 14) [33]. In the results reported here, to

simplify the simulation scenarios, switching events were not

simulated. The system was turned on with all sources

connected and allowed to transition into its steady state as the

transients decayed. Fig. 7 shows the schematic single line

diagram of an IEEE 39 Bus system. This system is taken as

the basic building block to implement larger test systems for

simulation (i.e. Fig. 7).

TABLE I

DETAILS OF THE HYBRID SIMULATION PLATFORM

Main Computer (CPU) details

Type Intel core i7 CPU 2600K

CPU speed 3.40 GHz

Total RAM 16GB

GPU Details

Type NVIDIA GeForce GTX 590

Number of multiprocessors 16

Number of cores 512

Global memory 1.5GB

Constant memory 65KB

Shared memory per

block

64KB

Registers available per block 32768

Warp size 32

Max. No. of threads per block 1024

Fig. 8: Performance of GPU-computing for different power systems.

In this work two different programs for each network are

developed. The first is written in conventional ANSI C code

and runs sequentially on the CPU. The second program is

written in CUDA-C to run in parallel on the several processors

of the GPU. The duration of simulation in all the test cases

was 10 seconds. Simulation results for networks of different

sizes are listed in Table II. The first column in Table II

indicates the ‘number of buses’ in the network, the second

column shows the ‘CPU time’, i.e. the time taken for

conventional sequential processing using only the CPU; and

the third column shows the ‘GPU time’, which is GPU-

computing based simulation time. For example, in case of

936-bus system, conventional ANSI C based sequential

implementation requires 4530.38281 seconds (more than an

hour), where as GPU-based implementation requires only

58.83000 seconds (less than a minute).

The speed up factor for GPU-computing, (βGPU−CPU) is

defined by the following equation [19], [21], [23]:

 (3)

Fig. 8 shows the speed up of GPU-computing for the

simulation results shown in Table II. In this case the maximum

speed up is approximately 80 for a system with 936-buses.

The test systems of Fig. 8 have electrically modeled

generators, transmission lines were modeled using pi-networks

and the transformer’s magnetizing effects were not included in

this simulation. It is to be noted that in this simulation process

(i.e. the results presented in Table II) network sparsity was not

taken advantage of. As seen from Table II, a significant speed

up factor of about 80 was recorded using GPU-computing for

a system with 936 buses. The sequential processor using only

the CPU required more than an hour whereas the CPU-GPU

based hybrid implementation required only one minute to

finish the job.

TABLE II

SIMULATION RESULTS FOR DIFFERENT NETWORKS FOR

SIMULATION DURATION OF 10 SEC

Number of Buses CPU Time GPU Time

 Total Simulation Time in Sec

39 8.070000 19.090000

78 22.420000 26.709999

117 42.689999 16.209999

156 78.029999 17.799999

195 188.039993 19.590000

273 236.550003 22.760000

312 288.179993 24.120001

351 543.229980 26.420000

390 686.109985 27.809999

429 945.220886 31.280001

468 1102.944214 33.450001

546 1293.304688 37.570000

585 1602.443115 39.080002

780 3049.349609 67.410004

897 4141.088867 67.010002

936 4530.382812 58.830002

Fig. 9: Execution times for different power system sizes.

Next to investigate the speed up obtained with sparse

matrix-techniques; two different sets of program (one for the

CPU and the other for the GPU-implementation) were

developed for each test case. In this case, a look-up table type

technique (i.e. a table containing the indices for nonzero

elements in the matrix was generated) is used to avoid the

unnecessary multiplications involving zeros in the matrix-

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80
Gain in EMT simulation of large power systems

Number of Buses in the network

P
e

rf
o

rm
a

n
c
e

 g
a

in
 w

it
h

 r
e

s
p

e
c
t

to
 G

P
U

-c
o

m
p

u
ti
n

g

Case of not using sparsity technique

Case of using sparsity technique

0 100 200 300 400 500 600 700 800 900 1000
10

0

10
1

10
2

10
3

10
4

Simulation time for CPU and GPU implementations of different power systems

Number of Buses in the network

T
o

ta
l
ti
m

e
 f

o
r

s
im

u
la

ti
o

n
 o

f
d

if
fe

re
n

t
n

e
tw

o
rk

s
 o

n
 C

P
U

/G
P

U

CPU time with Sparsity technique

GPU time with Sparsity technique

CPU time without Sparsity technique

GPU time without Sparsity technique

vector multiplication process. Simulation results for this

approach are shown in Table III. The duration of simulation

was 10 sec for each case as before. For example, for the 936-

bus system, conventional ANSI C based sequential

implementation considering sparsity in the matrix-vector

multiplication, required 140.821884 seconds, where as GPU-

based implementation considering (sparsity included)

required only 22.830000 seconds. Note that with sparsity, the

CPU only solution itself became much faster. However, the

GPU based simulation was still significantly faster than the

CPU based simulation for large system sizes, but peaked at a

speed-up factor of 7 for the 936 bus system. The speed up

factor with sparsity is also shown in Fig. 8. Execution times

listed in Table II and Table III are plotted in Fig. 9.

TABLE III

SIMULATION RESULTS FOR DIFFERENT NETWORKS WITH

SPARSITY CONSIDERATION

No. of Buses CPU Time GPU Time

 Total simulation time in sec

39 5.680000 13.090000

78 10.950000 14.310000

156 21.799999 14.340000

195 27.410000 14.820000

273 39.230000 15.640000

312 45.060001 16.000000

351 49.660000 16.129999

429 62.645493 17.520000

507 73.697334 18.650000

585 86.360039 18.910000

624 91.971237 19.549999

663 97.462410 19.920000

702 104.123833 20.350000

741 109.835045 20.750000

780 115.996368 21.010000

819 121.767609 21.410000

858 128.628601 21.889999

936 140.821884 22.830000

VI. CONCLUSIONS

A novel approach to perform and speed up EMT-simulation

using GPUs is presented in this paper.

It is seen that speed up increases with the network size. So

far systems with detailed model of generators have shown a

speed up of 80 for a network of 900-buses in the network

(approx.).

A typical sparse-matrix technique is introduced in this

work, to avoid the multiplication involving zeros of the

admittance matrix. Inclusion of this sparse-matrix technique

also shown a significant speed up compared to the

conventional sequential algorithm running on the CPU. The

speedup with GPU was still significant; however, it was only 7

times faster for the 936 bus system.

General desktop computers equipped with these graphics

cards (which is normal in these days due to the increased

demand for graphics and animation related applications) could

be used to perform EMT-simulation in a much more economic

way.

In the near future, detailed model for different power

system equipments such as transmission lines, transformers,

power electronics devices, etc will be included in the

simulation process. It is expected that exploration of

parallelism in those power system equipments will result in

more speed up in the simulation process.

In future, standard electrical networks with more buses and

detailed model for different equipments will be included in the

simulation process.

Also, the effect of using multiple GPUs in sharing the

computation of a very large system will be investigated in

future.

VII. REFERENCES

[1] A. Gole, “Simulation tools for system transients: an introduction,” IEEE

Power Engineering Society Summer Meeting, Seattle, WA, USA, vol. 2,

pp. 761–762, 2000.

[2] H. W. Dommel, “Digital Computer Solution of Electromagnetic

Transients in Single- and Multiphase Networks,” IEEE Transaction on

Power Apparatus and Systems, vol. 44, no. 4, pp. 388–399, Apr. 1969.

[3] N. Watson and J. Arrillaga, Power Systems Electromagnetic Transients

Simulation. London, United Kingdom: The Institution of Engineering

and Technology (IET), 2003.

[4] A. Gole, “Electromagnetic Transient Simulation of Power Electronic

Equipment in Power Systems: Challenges and Solutions,” IEEE Power

Engineering Society General Meeting, Montreal, Quebec, Canada., pp.

1–6, 2006.

[5] A.M. Gole, R.W. Menzies, H.M. Turanli and D.A. Woodford,

“Improved interfacing of electrical machine models to electromagnetic

transients programs,” IEEE Transactions on Power Apparatus and

Systems, vol. PAS-103, no. 9, pp. 2446-2451, Sep 1984.

[6] A. M. Gole, S. Filizadesh, R. W. Menzies, and P. L. Wilson,

“Optimization-Enabled Electromagnetic Transient Simulation,” IEEE

Transactions on Power Delivery, vol. 20, no. 1, pp. 512–518, Jan. 2005.

[7] PSCAD/EMTDC, Manitoba HVDC research center, available online at

(Jan 5, 2013): https://pscad.com.

[8] A. Gole, T. Sidhu, O. Nayak, and M. Sachdev, “A Graphical

Electromagnetic Simulation Laboratory for Power System Engineering

Programs,” IEEE Transaction on Power Systems, vol. 11, no. 2, pp.

599–606, May 1996.

[9] Lou van der Sluis, Transients in Power Systems. London, United

Kingdom: John Wiley & sons Ltd, 2001.

[10] W. Long, D. Cotcher, D. Ruiu, P. Adam, S. Lee, and R. Adapa, “EMTP

A Powerful Tool for Analyzing Power System Transients,” IEEE

Computer Applications in Power, vol. 3, no. 3, pp. 36–41, Jul. 1990.

[11] J. R. Marti and L. R. Linares, “Real-Time EMTP-Based Transient

Simulation,” IEEE Transaction on Power Systems, vol. 9, no. 3, pp.

1309–1317, Aug. 1994.

[12] R. Kuffel, J. Giesbrecht, T. Maguire, R. Wierckx, and P. McLaren,

“RTDS-A Fully Digital Power System Simulator Operating in Real

Time,” IEEE Communications Power and Computing Conference,

WESCANEX, Winnipeg, Manitoba, Canada., pp. 300–305, May 1995.

[13] H. W. Dommel and W. S. Meyer, “Computation of electromagnetic

transients,” Proceedings of the IEEE, vol. 62, no. 7, pp. 983–993, Jul.

1974.

[14] H. W. Dommel, “Analysis of large power systems,” available online at

(March 19, 2011): http://www.archive.org/details/nasa_techdoc_197500

21777.

[15] IEEE Task Force on Computer and Analytical Methods, “Parallel

processing in power systems computation,” IEEE Transactions on Power

Systems, vol. 7, no. 2, pp. 629–638, May 1992.

[16] C. Larose, S. Guerette, F. Guaya, A. Nolet, T. Yamamoto, H. Enomoto,

Y. Kono, Y. Hasegawa and H. Taoka, “A fully digital real-time power

system simulator based on PC-cluster,” Mathematics and Computers in

Simulation - Special issue: Modelling and simulation of electrical

machines, converters and systems, Elsevier Science Publishers B. V.

Amsterdam, The Netherlands, vol. 63, no. 3-5, pp. 151–159, Nov. 2003.

[17] J. Franklin H. Branin, “Computer methods of network analysis,”

Proceedings of the IEEE, vol. 55, no. 11, pp. 1787–1801, Nov. 1967.

[18] Fernando L. Alvarado, “Parallel Solution of Transient Problems by

Trapezoidal Integration,” IEEE Transactions on Power Apparatus and

Systems, vol. PAS-98, no. 3, pp. 1080–1090, May 1979.

[19] NVIDIA, “GPU computing: CUDA zone,” available online at (Last

accessed on March 20, 2011): http://www.nvidia.com.

[20] GPGPU forum, “General-Purpose computation on Graphics Processing

Units,” website: http://gpgpu.org/.

[21] J. Debnath, W. K. Fung, A. M. Gole, and S. Filizadeh, “Simulation of

Large-Scale Electrical Power Networks on Graphics Processing Units,”

IEEE EPEC, Winnipeg, MB, Canada, pp. 284–289, Oct. 2011.

[22] J. Debnath, W. K. Fung, A. M. Gole, and S. Filizadeh, “Electromagnetic

Transient Simulation of Large-Scale Electrical Power Networks Using

Graphics Processing Units,” IEEE CCECE, Montreal, QB, Canada, pp.

1-4, May 2012.

[23] V. Jalili-Marandi and V. Dinavahi, “SIMD-Based Large-Scale Transient

Stability Simulation on the Graphics Processing Unit,” IEEE Transac-

tions on Power Systems, vol. 25, no. 3, pp. 1589–1599, Aug. 2010.

[24] D. B. Kirk and W. mei W. Hwu, Programming Massively Parallel

Processors: A Hands-on Approach . 30 Corporate Dr, Suite 400,

Burlington, MA 01803, USA: Elsevier Inc, 2010.

[25] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to

General-Purpose GPU Programming. Boston, MA 02116, USA:

Addison-Wesley Professional, 2010.

[26] John D. Owens and Mike Houston and David Luebke and Simon Green

and John E. Stone and James C. Phillips, “GPU Computing: Graphics

Processing Units–powerful, programmable, and highly parallel–are

increasingly targeting general-purpose computing applications,”

Proceedings of the IEEE, vol. 96, no. 5, pp. 879–899, May 2008.

[27] Robert L. Boylestad, Introductory Circuit Analysis. Prentice Hall, 2002.

[28] R. Kuffel, J. Giesbrecht, T. Maguire, R.P. Wierckx and P. McLaren,

“RTDS-A Fully Digital Power System Simulator Operating in Real

Time,” IEEE Communications Power and Computing Conference,

WESCANEX, Winnipeg, Manitoba, Canada, pp. 300-305, May 1995.

[29] D. M. Falca´o, E. Kaszkurewicz, and H. L. Almedida, “Application of

Parallel Processing Techniques to the Simulation of Power System

Electromagnetic Transients,” IEEE Transactions on Power Systems,

vol. 8, no. 1, pp. 90–96, Feb. 1993.

[30] M. Tomim, J. R. Marti, and L. Wang, “Parallel solution of large power

system networks using the multi-area the´venin equivalents (MATE)

algorithm,” ELSEVIER, Electrical Power and Energy Systems, vol. 31,

2009.

[31] K. Hwang and F. A. Briggs, Computer Architecture and Parallel

Processing. New York, USA: McGraw-Hill, 1984.

[32] D.A. Woodford, A.M. Gole and R.W. Menzies, “Digital simulation of

DC links and AC machines,” IEEE Power engineering Review, pp. 36–

36, Jun. 1983.

[33] “GNU Operating System,” available online at (Last accessed on March

20, 2011): http://www.gnu.org/.

