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Abstract The resonance between power-factor-correction
capacitors and the line reactance is a common cause for harmonic
problems in traditional power systems. Grid-connected inverters
integrating renewable energy sources into the grid exhibit capac-
itive output impedance at harmonic frequencies and may also
resonate with the grid impedance. In addition to possible amplifi-
cation of current and voltage harmonics, such resonances may
lead to inverter control instability and other dynamic problems.
This paper presents an overview of inverter modeling and system
analysis methods for the characterization and mitigation of
harmonic resonances involving renewable energy sources. The
concept of sequence impedances is generalized to nonlinear
circuits and used to model three-phase inverters at harmonic
frequencies. A new harmonic resonance analysis method based on
the Nyquist stability criterion is presented. Possible ways to shape
the inverter output impedance to avoid resonances with the grid
are highlighted, and the opportunity for adaptive inverter control
based on real-time grid impedance measurement is discussed.

I.  INTRODUCTION

ARMONIC resonance is common in power systems. The
resonance of line and transformer reactance with power-

factor-correction (PFC) capacitors can lead to amplification of
harmonic currents generated by nonlinear loads [1]. Other
possible sources of harmonic resonance include underground
cables and ferro-resonance of lightly loaded transformers [2].
With the increasing penetration of renewable energy in the
power grid, inverters that interface with distributed generation
(DG) resources such as solar and wind are becoming new
potential sources of harmonics and harmonic resonance [3-9].
In addition to compliance issues with regulatory power quality
standards [10], excessive harmonics and harmonic resonance
may also lead to other problems such as damage of filter
capacitors due to overheat, mechanical vibration of filter
inductors, false trig of inverter and grid protection functions, as
well as unintended shutdown of wind turbines and sometimes
an entire wind farm.

Existing methods to model harmonics and harmonic
resonance in solar [3-4] and wind power plants [5-9] follow the
traditional power system harmonic analysis approach [11], in

which the inverter is modeled as a source of harmonic currents
[3-5] or voltages [6, 7]. These harmonics are usually attributed
to the inverter pulse-width modulation (PWM) control and are
treated as harmonics of either the PWM carrier signal or the
line fundamental [12, 13]. The carrier harmonics are normally
well attenuated by inverter output filters and only become a
concern for system harmonics when the switching frequency is
low compared to the fundamental, such as in large wind and
solar inverters where the switching frequency is limited to a
few kHz or lower. Imperfect PWM control may result in low-
order harmonics of the fundamental. Recently advances in
circuit (such as multilevel converters) and PWM techniques
provided many different ways to reduce or eliminate PWM-
related harmonics. They also become less and less important as
semiconductor power devices continue to improve and enable
higher switching frequencies.

The network models used for system harmonic analyses in
existing works include the impedance of the lines and cables,
transformers, and filter components. The inverter is modeled
as either a simple harmonic source, or a harmonic source with
output impedance in the form of a Thevenin or Norton equiv-
alent circuit. The report [7] by the IEEE PES Wind Plant
Collector System Design Working Group pointed out the
limitations of ideal harmonic source models and suggested the
use of a Norton equivalent circuit model to account for the
effects of inverter control on the output impedance and
harmonic emission. However, existing inverter models cannot
be used to support this type of analysis. As a result, existing
system harmonic analysis either simply ignores inverter output
impedance or considers only the impedance of passive filter
components. Similar problems exist in harmonic and harmonic
resonance analysis of other power systems involving voltage-
source converters, see e.g. [14]. Ignoring control functions in
the inverter model not only results in inaccurate and potentially
incorrect harmonic predictions, but also misses the opportunity
to mitigate harmonic problems through inverter control, which
can be easier to implement and more cost effective.

This paper presents a new approach to the analysis and
mitigation of power system harmonic and harmonic resonance
problems involving renewable sources. The emphasis is on
output impedance models of grid-connected inverters that can be
used in system harmonic analysis. It is assumed that PWM carrier
and other non-characteristic harmonics are small and can be
ignored, such that an inverter can be adequately modeled by its
output impedance for system harmonic analysis. A new method to
detect potential resonances between the inverter output impedance
and the grid impedance based on the Nyquist stability criterion is
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presented. The concept of sequence impedances is generalized to
nonlinear circuits and applied to three-phase inverters to develop
output impedance models at harmonic frequencies. Possible ways
to shape the output impedance through control of the inverter to
avoid resonances with the grid are highlighted, and opportunities
for adaptive inverter control based on real-time grid impedance
measurement are discussed.

II.  INVERTER OUTPUT IMPEDANCE MODELING

Fig. 1 depicts an ideal three-phase two-level voltage-source
converter as a basic building block for grid-connected
inverters. For renewable energy applications, the dc bus is fed
from solar panels or a wind turbine (through a rectifier), and
the three ac terminals are connected to the grid, usually with
additional filter capacitors to attenuate the PWM harmonics.
An LCL filter configuration has also been proposed in the liter-
ature, see e.g. [15]. The following discussion will focus on
inverters with simple inductive filtering. Additional filter
components can be easily incorporated into the inverter model,
or considered to be part of the grid impedance if they are not
involved in the control of the inverter.

With reference to Fig. 1, the operation of a VSC can be
described by the following equations where sx is a binary
function and represents the conduction state of phase x (= a, b,
c): sx = 1 when the upper-side switch conducts and 1 when
the lower-side switch conducts:

(1)

Voltage vN is the voltage of the ac (grid) neutral relative to the
middle of the dc bus. This voltage consists of the common-
mode components of the 2-level PWM phase voltages [16] and
can be ignored in the modeling below the PWM carrier
frequency, especially when there is no path for common-mode

currents†. For the same reason, the binary gate control signal of
each phase leg can be replaced by its average over a carrier
cycle using the duty ratio (dx) of the upper-side switch:

(2)

The averaged model (2) is bilinear, as it involves the
product between the control variables (duty ratios) and the
state variables (dc bus capacitor voltage and ac phase inductor
currents.) This nonlinearity is inherent in VSC and is one of the
difficulties associated with their impedance modeling.
However, since the dc bus capacitor is large and its dynamics
are slow, the dc bus voltage can be treated as a constant when
modeling the impedance above the grid fundamental
frequency. The resulting reduced-order model is linear and
independent of the circuit supplying the dc bus current, idc.
This permits an output impedance model to be directly
obtained when all controls are linear. For example, when each
phase current is controlled by a PI controller as depicted in
Fig.2, the output impedance of each phase is

(3)

where Hi(s) is the current compensator transfer function, Km is
the modulator gain, and Kf(s) is the grid voltage feedforward
gain (see Fig. 2). The reference current, iref, is assumed to be
proportional to the phase voltage by a gain Gr(s). In the
simplest case when a PI current compensator

(4)

is used without grid voltage feedforward and the reference
current is independent of the grid voltage, Zin(s) simplifies to

. (5)

Since the output impedance is identical for all three phases
and uncoupled, the three-phase inverter can be represented by

 Fig. 1.  Block diagram of three-phase voltage-source converter.
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a single-phase equivalent circuit consisting of a current source,
I, in parallel with the output impedance, Zin(s), see Fig. 3. The
use of a Norton instead of Thevenin equivalent circuit here is
necessary because grid-connected inverters are usually
controlled as current sources that cannot operate in an open-
circuit configuration [17].

Independent phase current control, however, is not very
common in practice because of its limited performance. Most
grid-connected inverters are controlled in a rotating (dq)
reference frame synchronized to the grid voltage, and the
synchronization is usually performed by a phase-locked loop
(PLL) [18]. The PLL and the transformation to and from the dq
domain introduce additional nonlinearity that cannot be
avoided by the reduced-order modeling technique applied
before, and the model must be linearized by other techniques in
order to find the inverter output impedance.

The difficulty with linearizing a nonlinear inverter model is
that there is no dc operation point to permit the application of
conventional small-signal analysis methods. Traditional power
system theories overcome this difficulty by using models
expressed in terms of voltage and current phasors. Since both
the amplitude and phase of a phasor are constant when the
system enters steady-state, a nonlinear phasor model can be
linearized by conventional small-signal methods. However,
such phasor-based models are only valid at and below the line
fundamental frequency and, hence, cannot be used in the
analysis of harmonic resonance and other high-frequency
phenomena related to grid-connected inverters. Additionally, a
phasor model cannot be used to determine the input and output
impedance of a converter [19].

A method to model three-phase converter impedance by
harmonic linearization was developed in [20, 21] for line-
commutated converters (LCC) and applied in [22] to three-
phase VSC. In this method, a small-signal impedance model is
obtained by directly calculating three-phase current responses
to a small-signal harmonic perturbation in the three-phase
voltages. Such current responses were found to depend on the
sequence of the voltage perturbation for LCC as well as VSC
with PLL-based control. Therefore, a voltage perturbation is
further decomposed into positive, negative, and zero sequence
components, as defined below.

1) Fundamental Voltage at f1

(6)

2) Positive-Sequence Perturbation at fh

(7)

3) Negative-Sequence Perturbation at fh

(8)

4) Zero-Sequence Perturbation at fh

(9)

A zero-sequence perturbation produces no current, hence
doesn’t need to be considered. The current response to the
positive-sequence and negative-sequence perturbation can
each be calculated analytically based on the converter circuit
and control by applying the harmonic linearization principle
[20]. In general, the current response to a voltage perturbation
in either sequence may contain both positive-sequence and
negative-sequence components. This implies that the output
admittance of a three-phase grid-connected inverter needs to
be modeled in a matrix form as

(10)

where the off-diagonal terms represent cross-coupling between
positive-sequence and negative-sequence components.
However, it has been verified that, when the grid fundamental
voltages are balanced, as in the case of (6), the negative-
sequence current inducted by a positive-sequence voltage
perturbation and the positive-sequence current inducted by a
negative-sequence voltage perturbation are zero in the small-
signal sense, that is, their magnitudes are high-order functions
of the perturbation voltage. Because of that, the off-diagonal
terms in (10) are zero and the inverter can be modeled by a
positive-sequence output impedance, Zp, and a negative-
sequence output impedance, Zn, without cross-coupling.

As an example, consider again the phase current control
scheme depicted in Fig. 2. A PLL is used to synchronize the
reference current with the grid voltage. The PLL, depicted in
Fig. 4 uses dq transformation and a low-pass filter to extract
the grid voltage phase angle (pll) from the q-axis voltage [18].
Define the PLL loop gain as

(11)

ZinI

Fig. 3.  Norton single-phase equivalent circuit representation of a three-phase
inverter with independent linear phase current control.
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and denote the admittance of the inverter at the fundamental
frequency as Y1. The output impedances are found to be as
follows when no grid voltage feedforward is used (Kf = 0) [22]:

(12)

(13)

As an alternative to the harmonic linearization method, the
three-phase averaged model (2) can be transformed to the dq
reference frame. When the transformation is synchronized to
the grid voltages, the phase voltages and currents become dc
quantities in the dq coordinate system. The transformed model
can, therefore, be linearized to calculate the inverter output
impedance in the dq coordinate system. This method has been
used to study the stability of three-phase PWM converters [23].
However, the resulting impedance model is not compatible
with commonly used grid impedance models and are also
difficult to measure or verify by experiments. Other limitations
of this method have been discussed in [19].

III.  ANALYSIS OF HARMONIC RESONANCE

Harmonic resonance can be detected by scan of system
impedance at harmonic injection points [2]. To locate the
source of resonance, modal sensitivity analysis has been
proposed [24] to determine how each resonant mode is related
to different components of the system. Each of these methods
has limitations when applied to renewable energy systems. A
grid-connected inverter may emit harmonics due to PWM and
imperfect control. However, the injection point of these
harmonics is inside the inverter which is difficult to access for
impedance scan. Besides, these harmonics are usually small
and not a major concern for system harmonics. Modal analysis
and other sensitivity analysis techniques require models of the
entire network which renewable energy developers usually do
not have access to.

An impedance-based stability analysis method was
developed in [17] for single-phase grid-connected inverters. In
this method, the inverter is represented by its Norton equiv-
alent circuit (Fig. 3), and the grid is represented by an ideal
voltage source in series with grid impedance, see Fig. 5. Based
on this small-signal model, the grid current can be expressed as

(14)

which can be rearranged into

. (15)

Assuming that the inverter is properly designed and can
operate with an ideal grid (zero impedance), (15) provides a
mathematical model for the analysis of inverter control
stability in the presence of grid impedance. Specifically, a
grid-connected inverter will remain stable in the presence of
grid impedance if the ratio of the grid impedance to the
inverter output impedance, , satisfies the Nyquist
stability criterion [17]. 

In addition to inverter control stability analysis, the small-
signal system model (15) can also be used to determine
possible resonance between the inverter and the grid. Namely,
an insufficient phase margin at frequencies where the inverter
output impedance intersects with the grid impedance would
indicate under-damped resonant modes. Such under-damped
resonance can be periodically excited by switching and other
nonlinearity of the inverter, leading to sustained harmonic
currents at or near the resonant frequencies. The method has
been successfully used to study harmonic resonance involving
single-phase solar inverters [25].

This method can be directly applied to three-phase
converters and systems that can be represented by a single-
phase equivalent circuit, such as in the case when an inverter
with linear phase current control (discussed at the beginning of
Section II) is connected to a balanced grid. In more general
cases, the inverter can be modeled by the admittance matrix
(10) and the grid impedance can be represented by a similar
sequence impedance matrix as [26]:

(16)

It can then be seen that the interconnected inverter-grid system
stability depends on the eigenvalues of

(17)

where I is a  unity matrix. Therefore, the generalized
Nyquist stability criterion [27] can be applied to the matrix
YinZg to determine the stability and possible resonant modes.

The analysis is greatly simplified when the positive-
sequence and negative-sequence responses are uncoupled. As
discussed in the previous section, that is the case for typical
grid-connected inverters. The grid impedance matrix also

 Fig. 4.  Block diagram of a PLL based on dq transformation.
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degenerates into a diagonal form with no cross-coupling
between positive and negative sequences when the grid is
symmetrical. Therefore, a three-phase inverter connected to a
balanced grid can be represented by a positive-sequence and a
separate negative-sequence equivalent circuit as shown in Fig.
6. Since the two equivalent circuits are independent, Nyquist
stability criterion can be applied separately to

   and   (18)

and the three-phase system is stable if and only if both
sequence subsystems are stable. Similar to the single-phase
case [17], lack of stability margin in either equivalent circuit
implies harmonic resonance in the corresponding sequence.

The equivalent current sources in Fig. 6 model the inverter
output current at the fundamental as well as harmonic
frequencies when the grid is ideal, that is, a balanced grid
without any impedance. Since such a grid does not exist in
practice, these currents can be determined by detailed circuit
simulation or measurement with a strong grid if possible. For
the purpose of harmonic resonance analysis based on the
Nyquist stability criterion, these current sources do not matter
and both can be treated as open-circuits.

Similarly, the equivalent voltage sources in Fig. 6 represent
the fundamental as well as harmonic components of the grid
voltage. Hence the equivalent circuits can also be used to study
the effects of source unbalance and background harmonic
distortion on system harmonic currents. For a harmonic-free,
balanced three-phase grid, all voltages except the positive-
sequence fundamental voltage are zero. Additionally, Zgp =
Zgn if the grid contains only passive elements [26].

The inverter output impedances become coupled when the
grid voltages are unbalanced. However, the off-diagonal terms
in the impedance matrix are found to be proportional to the
level of voltage unbalance measured in per-unit values.
Therefore, the off-diagonal terms are at least 20 dB lower than
the diagonal terms for a normal unbalanced grid where the
unbalance is typically less than a few percent. Considering
that, the separate equivalent circuits in Fig. 6 can be used for
practical purposes unless there is a asymmetrical fault in the
system that causes severe voltage unbalance.

IV.  APPLICATIONS

This section presents laboratory test results to demonstrate the
application of the proposed impedance modeling and harmonic
resonance analysis methods. The experimental setup is illustrated
in Fig. 7 and consists of a three-phase inverter rated at 20 kW as
well as a grid simulator [25, 28]. The grid simulator was
developed to provide a controllable grid with programmable
voltage, frequency, harmonic contents, as well as impedance. It
consists of an active part built using back-to-back VSC and a
passive part using adjustable inductors and capacitors.

The inverter was built in-house and employes a DSP and an
FPGA control board. Its control structure is illustrated in Fig. 7
and consists mainly of three parts: a) a PLL for synchronization
with the grid voltage, b) dq-domain current control, and c) pulse-
width modulation. In all experiments presented here, the inverter
was fed from a programmable dc power source and the dynamics
of the dc bus are not considered. A 3.6 mH inductor (L) is placed
at each ac phase terminal. Three star-connected capacitors (each
22 F) are used to provide additional filtering of PWM
harmonics. Each capacitor is also connected in series with a 1.87
 to provide damping. However, to simplify the inverter
impedance models, these capacitors and resistors are lumped with
the grid (as indicated in Fig. 7) and are included in the grid
impedance model. The DSP and FPGA control boards sample the
grid voltages and currents at 50 s and 25 s intervals, respec-
tively, and the corresponding sampling effects are included in the
inverter impedance models. Fig. 8 shows the responses of the
inverter output impedances Zip and Zin as defined in the previous
section. The dots represent the responses measured by a frequency
analyzer for comparison.

Zgp
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--------

Zgn

Zin
--------

Fig. 6.  Representation of a three-phase inverter connected to a balanced grid by
independent positive-sequence and negative-sequence equivalent circuits.

Zip

Zgp

Ip +_Vgp Zin

Zgn

In
+_Vgn

 Fig. 7. Experimental setup for testing a three-phase inverter connected to a balanced grid with variable grid inductance.
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As can be seen from Fig. 8, both the positive-sequence and
negative-sequence impedances are capacitive above the grid
fundamental frequency. The phase of the positive-sequence
impedance even exceeds 90o around 100 Hz. Since the grid
impedance is inductive, with close to +90o phase angle in this
frequency range, a resonance will be formed if the two imped-
ances intersect with each other in this frequency range, and
such a resonance would be very lightly damped or even
unstable because of the close to 180o phase difference between
the inverter and grid impedance. Based on Fig. 8, the
resonance is more likely to occur with the positive-sequence
impedance because of its larger phase shift.

Fig. 9 shows two sets of inverter output current measure-
ments and their harmonic contents obtained by Fourier
analysis. In the first case, the bandwidth of the PLL used to
synchronize with the grid was set at 100 Hz, and the corre-
sponding current responses of the inverter are shown in Fig.
9a). Large distortion due to harmonic resonance between the
inverter and the grid can be seen. Fig. 9c) shows the spectrum
of the inverter output current and the Nyquist plot of the ratio
of the grid impedance to the inverter output impedance. The
positive-sequence impedance ratio shows that the system is
stable but with less than 20o phase margin around 200 Hz. The
small phase margin leads to an under-damped resonance and
explains the observed strong 3rd and 4th harmonics.

Fig. 9b) shows the measured current waveforms when the PLL
bandwidth was reduced to 10 Hz. The corresponding current
spectrum and Nyquist plots of the impedance ratio are shown
in Fig. 9c) as well for comparison with the first case. As can be
seen, both the positive- and the negative-sequence impedance
ratio has sufficient phase margin in this case, which effectively
eliminated the harmonic resonance.

These measurements demonstrated the importance of both
inverter control and grid impedance in harmonic performance
of grid-connected inverters. To reduce the risk for resonance,
the inverter output impedance should be as high as possible,
ideally above the grid impedance at all frequencies. Since this
is impractical due to the inductive nature of grid impedance, it
is important to identify the frequencies at which the inverter
and the grid impedance intersect, and to ensure sufficient phase
margin through proper inverter control design [29]. The
analytical impedance models provide a means for such design.
Additionally, since the grid impedance changes from site to
site and may vary over time, adaptive control based on real-
time grid impedance measurement may be considered [30].
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Fig. 8.  Positive-sequence and negative-sequence output impedance responses
of a three-phase inverter. Solid lines: model predictions; Dash-dot: experimental
measurements.
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V.  CONCLUSIONS

Although PWM switching ripple and non-characteristic
harmonics caused by imperfect control of grid-connected
inverters may contribute to grid system harmonics, resonance
between the inverter output impedance and the grid impedance
is a more likely source of harmonics in renewable energy
systems. The combination of harmonic linearization and
sequence impedance decomposition provides an effective and
systematic method to model inverter output impedance for
system harmonic resonance analysis. Under balanced or mildly
unbalanced grid conditions, a three-phase inverter-grid system
can be decomposed into a positive-sequence and a negative-
sequence subsystem, and Nyquist stability criterion can be
applied to each subsystem separately to determine system
stability as well as possible resonant modes.

A marginally stable inverter current control loop in the
presence of high grid impedance is a common source of system
harmonic resonance. To ensure stable operation under different
grid conditions, a grid-connected inverter should be designed
to have as high output impedance as possible. The analytical
impedance models presented in this paper also provide a
means to shape the inverter output impedance through control
and circuit design of grid-connected inverters to avoid
undamped resonances. Adaptive control such as gain sched-
uling can be used in conjunction with online grid impedance
identification techniques to guarantee stable and harmonic-free
operation under variable grid conditions.
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