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 Abstract— This work shows an analytical approach to relate 

the frequency spectrum of transient voltage generated by faults 

with fault location. An equation of the spectrum produced by 

travelling wave phenomenon is developed and is used to generate 

a fault location equation. The equation relates a characteristic 

frequency of signal with system parameters and fault distance. In 

order to demonstrate the effectiveness of the developed equations, 

most general faults are simulated using different values for 

equivalent impedance. Results show a very good accuracy in fault 

location.  
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I.  INTRODUCTION 

LECTRIC power lines are components that cover a great 

surface. Hence they are constantly exposed to faults. 

Some causes of fault are bad network maneuvers, objects or 

vegetation being in contact, decline of isolation due lightning 

or aging, vandalism among others. A fast and accurate fault 

location technique is essential for restoration of the system as 

soon as possible.  

Most established and known approaches for fault location 

are based on the apparent impedance equation. It relates 

voltages and current phasors with line impedance and 

unknown distance to the fault, fault resistance and fault 

current. Equation is solved for distances depending on the 

system treated. For transmission lines with feedings in both 

sides, some established methods are [1]-[2] that deal with 

current distribution factors. For radial systems with multiple 

branches and considerable shunt admittance, a generalized 
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equation is developed in [3], where two second order 

polynomials for fault distance are developed. 

Another concept for fault location is the travelling wave 

method. This approach is treated in early works like [4] and is 

based in a simple idea. Due the distributed nature of electrics 

line parameters, a fault produce a voltage and current wave 

that propagates in two directions of the line. Wave fronts can 

then be detected in different time instants when they arrive to 

system terminals. Then, knowing the propagation velocity of 

wave and time difference among arrivals, it is possible to 

calculate the fault distance. The advantage of using this 

approach is a minor influence of fault type and resistance, 

source parameters, current transformers saturation and load 

state of the system [5]. Furthermore, apparent impedance 

methods need information of some fundamental frequency 

cycles to work. Indeed, travelling wave can work with 

information of only a fraction of cycle. It leads the possibility 

of an ultra-high velocity technique. 

When information from two terminals is available the 

problem is relatively easy to solve. Since waves arrive firstly 

to the nearest terminal, a simple relation between time and 

velocity can be used to calculate fault distance. In order to 

detect wave fronts many detection methods have been 

proposed, like wavelets transform [6], filtering [7] or Park’s 

transformation [8]-[9]. However, to be possible to detect the 

wave fronts, expensive high frequency measurement devices 

are required in both ends. Furthermore, time references of 

devices must be synchronized. This task is actually made by 

GPS technology. 

If only one terminal data are available, time delay between 

successive wave’s reflections must be detected. Nonetheless, 

for faults involving ground, also reflections from the remote 

terminal can be observed. Some proposed solution of this 

problem are presented in [10] and [7] 

Dealing with the problematic of detecting and identifying 

multiples wave’s reflections, current or voltage spectrum can 

be used as a signature for estimating the fault distance. The 

voltage or current spectrum produced by a short circuit in a 

line is proportional to its impulsive response [11]. It is 

composed by a series of peaks in frequencies related with fault 

location and reflection coefficients. Swift [12] analyzes the 

natural frequency spectrum generated by faults. He treats this 

frequency as a noise that affects relays performances and 

shows that it is inversely proportional to fault distance. On the 

other hand, the equation presented there is incomplete because 
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only refers to extreme cases of the upstream impedance from 

Relay.  

 In [13] a formulation is proposed by implementing a 

mother wavelet inferred from the own measured signal. 

However these methods continue with the consideration of 

extreme values of the upstream impedance from Digital Fault 

Recorder (DFR). 

The aim of this paper is to develop a general formulation 

for calculating the dominant frequencies due to fault 

occurrence in transmission lines. Then, to consider the source 

impedances effect into a simple and practical equation. 

Reference [14] treats the same problem. On the other hand, the 

presented paper not only presents an equation for fault 

location, but also derives a transfer function that gives the 

entire spectrum due a fault. This transfer function also can be 

helpful in future works to solve the problem of faulted branch 

identification. Finally, the formulation is implemented using 

Matlab® and validated with ATP (Alternative Transient 

Program) simulations.  

II.  THEORETICAL BACKGROUND OF THE CHARACTERISTIC 

FREQUENCY 

Consider the line-to-ground fault in a single-phase 

transmission line illustrated in Fig.1, where Zc is the surge line 

impedance and Xs is the equivalent reactance at bus A. 
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Fig.  1.Faulted single-phase transmission line 

For a fault with zero resistance, the voltage at bus B is 

collapsed to zero by a negative step surge. This wave goes 

toward bus A in a time τ, cancelling out the voltage as it 

travels. As explained in [12], the surge will be reflected at both 

ends generating a noise superposed with the source voltage. 

The dominant noise frequency can be represented as [12]: 

 1
,

p

noisef
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  (1) 

Where τ is the transit time and np is related to the propagation 

of the travelling wave along the transmission line. If Xs >> Zc, 

np will be very close to 4 and if Xs << Zc, np will be close to 2. 

According with [13], the dominant noise frequency can be 

measured and used to isolate τ from (1). Since τ is directly 

related with fault distance, the noise frequency is generally 

referred as characteristic frequency (fC) of high-frequency 

components of current and voltages generated by faults. This 

approach requires the knowledge of np that has been assumed 

as 2 or 4 on prior works. However, for the case where Xs is 

neither small nor large, fC lies in fact between the two 

extremes. This distortion was identified in [12] and referred as 

the interference of the waves with its own multiple reflections 

and with the ground mode wave and its reflections. To 

illustrate what is described above, consider the single-phase 

transmission line modeled in ATP and shown in Fig. 2. 
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Figure 2. Faulted single-phase transmission line modeled in ATP 

The voltage step injected by the fault is simulated by 

switching a DC source of 1 V in node B. The length of the 

transmission line is 120 km, the impedance Zc is 962 Ω and 

the wave propagation time is 400.27 µs. Voltage at node A is 

showed in Fig. 3 for three different Xs values. Remind that this 

situation is not real and is only an illustration to show the 

waves behavior. 

 

Figure 3. Results of voltage measured at bus A performed with ATP: 

 a) Xs =  0.188 ; b) Xs = 30.159 ; c) Xs = 1884.955  (at 60 Hz) 

Cases (a) and (c) are the both extreme conditions for the fC, 

where np is 2 and 4 respectively. In case (b) the reactance at 

node A have an intermediate value, leading to significant wave 

interferences. In such case np is equal to 2.38, instead of 2. 

Note that wave fronts are the same in all cases, showing that 

(1) must be modified to take into account the value of Xs. 

III.  PROPOSED EQUATIONS FOR CHARACTERISTICS 

FREQUENCIES 

A general formulation for estimation of the characteristic 

frequency generated by faults occurrence is obtained from a 

transfer function of a single-phase transmission line. This 

formulation can be used for fault location in transmission lines 

based on high-frequency components technique. 

A.  Equation of spectrum 

The problem identified in the previous section can be 

solved using the Lattice diagram shown in Fig. 4. Waves will 

be reflected and transmitted at bus 1 and 2 according to the 

product of travelling waves with reflection and transmission 

coefficients (hr and ht respectively). If these coefficients are 

frequency dependent, the reflected and transmitted waves are 

convolutions in time with the coefficients. Therefore, in 

frequency domain the operations are simple products. This 



suggests that hr and ht are the impulse responses of linear 

systems with incident waves as input and reflected and 

transmitted waves as outputs. 
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Fig.  4. Lattice diagram of a single-phase transmission line 

The measured voltage at end one is composed by a sum of 

transmitted voltage waves given by: 
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(2) 

where τ is the propagation time of waves in the line, h
*n

 means 

an n-times convolution of h by itself, and v is the voltage 

injected at bus 2. This voltage is a function of time and in this 

case can be considered as a step function. 

Laplace transform of (2) outcomes in: 
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(3) 

and it can be written in a compact form as: 
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Where M is the number of considered wave front arrivals and 

V is the Laplace transform of v.  

Reflection and refraction coefficients of transmission line 

of Fig. 4 in frequency domain are: 
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Equation (4) is a geometric series that converges to 
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System of Fig. 4 is linear and can be represented by the 

following transfer function: 
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The behavior of (9) with s = jω shows how the frequencies 

of an arbitrary input are filtered. By evaluating the modulus of 

(9), it is possible to identify a progression of higher peaks 

among little peaks. The higher peaks are independent of M and 

allow the passage of characteristics frequencies. To locate 

these peaks is enough to find the maximums modulus of the 

quotient part in (9). This modulus can be expressed at a 

specific frequency ω as: 
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where:  
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Greatest peaks in (10) are spaced at characteristics frequencies 

given by: 
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Then, the lowest characteristic frequency is found by 

substituting (12) and (13) in (14) and taking n = 0. This 

frequency expressed in Hertz, with τ in seconds and θ in 

radians is: 
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B.  Relation between equation of spectrum and fault location 

A faulted line can be studied with Fig. 4 as follows. In 

many cases the fault can be modeled as a resistance much 

lower than the characteristic impedance of the line. Assuming 

this, the faulted point can be well represented as bus 2 in Fig. 4 

with R2 as the fault resistance and x as the fault distance. Then, 

Hr2 is a negative real number and the angle given in (12) is π 

plus angle of Hr1. The pure-fault line can be represented as a 

step-function voltage source with all others sources turned off. 

Then the pure effect of the fault can be studied by setting v(t) 

in bus 2 [13]. In conclusion, bus 1 represents the feeding 

terminal with short circuit impedance composed by R1 and L1. 

The characteristic impedance of the line is Zc, R2 the fault 

resistance and x the fault distance. 

If a fault was detected and its characteristic frequency was 

measured, equation (15) can be rearranged to estimate a fault 

distance as: 
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where fcm is the measured characteristic frequency and υ is the 



wave propagation velocity calculated for fcm. As faults can be 

considered as pure resistive and lower than Zc, Hr2 is a real 

negative number. Then, two extreme conditions can be 

inferred. When impedance at bus 1 is a resistance lower than 

Zc, the angle θ is 0 and (16) is reduced to: 
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If impedance at bus 1 is a resistance higher than Zc, θ is π 

and (16) is reduced to 
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When impedance at bus 1 is composed by an inductance, θ lies 

between 0 and π. Thus is necessary to use general (16) to solve 

the fault location problem. Observe that when L1 tend to 

infinity, θ is always π leading (18). It is important to note that 

the angle of a complex number always lies between 0 and π. 

C.  General behavior of frequencies versus fault distances 

If all inductances and resistances of the system represented 

in Fig. 4 were constant with frequency, the angle of (12) can 

be given as: 
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Considering Fig. 4, when a fault is near bus 1 the frequency 

is higher and (19) tend to π for a constant L1. If L1 is small the 

angle approximate slower to π than if L1 is higher. The latter 

conclusions can be seen with the next example. Consider the 

transmission line of Fig. 4 with Zc = 929 Ω, R2 = 10 Ω, 

R1 = 1.5 Ω and a varying L1. Fig. 5 shows the characteristic 

frequency as a function of fault distance x and the inductance 

at measurement point, with x varying from 1 to 30 km.  

 
Fig.  5. Characteristic frequency as a function of fault distance and the 

inductance at measurement point (frequency axe is logarithmically scaled). 

According with Fig. 5 and (16), the characteristic frequency 

is inversely proportional with x. But as θ just vary with 

frequency, characteristic frequency approximate to one of 

extremes conditions only on determinates ranges of distances. 

For that reason the np factor in (1) cannot be considered as a 

constant with frequency.   

IV.  STUDIED CASES 

In order to demonstrate the effectiveness of the developed 

equations, a typical Brazilian sub-transmission line was 

modeled using ATP. This line has a length of 30 km and a 

nominal voltage of 69 kV connecting the substation of 

Charquedas2 with Areal, in the state of Rio Grande do Sul. A 

schematic diagram of line and the fault model are defined in 

Fig. 6. 

Z1 Z2

MP

1 2

30 km

x

Ra

Rg

a b c

Rb Rc

 
Fig.  6. Line electric diagram and fault model. 

 

The model was considered with three different values of Z1 

leading to three case studies. The First one has the originally 

specified value of Z1; the others two have the Z1 arbitrary 

modified in simulations for testing the effectiveness of (16). 

Values of Z1 are presented in Table I and simulated fault are 

showed in Table II.  

TABLE I 

TEST SYSTEMS 

Case R0 [Ω] L0 [H] R+ [Ω] L+ [H] 

1 1.57 0.0156 1.41 0.02 

2 3.15 0.042 2.82 0.03 

3 3.15 0.08 2.82 0.058 

R0 and L0 are zero sequence parameters; 

R+ and L+ are positive and negative sequence parameters. 

TABLE II 

SIMULATED FAULTS ON TEST SYSTEM 

Fault 

Id. 

Fault 

type 

Dist. 

[km] 

Ra 

[Ω] 

Rb 

[Ω] 

Rc 

[Ω] 

Rg 

[Ω] 

A abc-g 4 0.2 0.2 0.2 0 

B c-g 7.3 - - 10 10 

C ab-g 17 5 5 - 10 

D bc 23.6 - 6 10 - 

Fault Id: Fault identification letter; 

To adequately model the travelling waves, the line was 

modeled using J. Marti’s frequency dependent model [18], 

considering a transposed line case.  

A.  Proposed algorithm for fault location 

In this section is proposed a series of steps that should be 

followed to perform the fault location by the fault characteris-

tic frequency approach.  

1) Fault detection and recording of faulted three phase 

voltages; 

2) Clarke transformation to obtain the 0, α, and β voltages; 



3) DFT of α or β voltages; 

4) Find the measured characteristic frequency; 

5) Calculation of θ for the characteristic frequency; 

6) Calculation of wave propagation velocity at the 

characteristic frequency; 

7) Estimate the fault distance with (16). 

 Aforementioned steps need some clarifications: to perform 

fault detection there are many approaches in literature and 

practice. Commonly, all methods are based on definition of 

some threshold level to activate the recording. Here the Park’s 

transformation approaches were used. It was proposed by [8] 

and an analysis of the method is found in [9]. Clarke 

transformation is a way to turn the three-phase voltages into 

three decoupled modal voltages called 0, α and β. It was 

chosen because in cases of transposed lines, it matches with 

modal transformation and symmetrical components [15]. The 

DFT analysis was made with a Matlab algorithm proposed in 

[16]. For calculating angle θ, the infinites series given by 

Carson were used [17]. 

B.  Results and analysis  

Each faults showed in Table II were applied to each system 

case of Table I. In Table III the results are summarized, 

showing the measured characteristic frequency, the angle θ and 

velocity υ calculated with characteristic frequency, calculated 

fault distance and associated error. Analysis was made with α 

mode of Clarke transformation except for the BC fault. These 

modes were chosen because they have less variation with 

frequency. Tests were carried out with a sampling frequency of 

1 MHz and a spacing of 50 Hz between frequencies.  

 
TABLE III 

RESULTS WITH SAMPLE FREQUENCY OF 1MHZ 

Mod Fault 

Id. 

Case fcm 

[Hz] 

θ [rad] υ [km/s] Dist. 

[km] 

Error 

% 

α A 

1 20 400 2.822 297 250 4.01 0.03 

2 19 800 2.917 297 230 4.02 0.06 

3 19 200 3.019 297 210 4.02 0.06 

α B 

1 12 000 2.606 296 810 7.23 0.23 

2 10 800 2.733 296 710 7.76 1.53 

3 10 050 2.907 296 630 7.9 2.00 

α C 

1 5700 2.087 295 980 17.33 1.10 

2 5400 2.350 295 920 17.15 0.50 

3 4950 2.670 295 820 17.18 0.60 

β D 

1 4350 1.897 295 770 23.70 0.33 

2 4050 2.176 295 700 23.86 0.86 

3 3600 2.537 295 580 24.47 2.90 

 

Results presented in Table III are very accurate, even 

though were used much higher sample frequency than that 

usually used in common commercial equipment. For this 

reason, some tests were made with a commercial sampling 

frequency of 15 kHz. These results are showed in Table IV. 

TABLE IV 

RESULTS WITH SAMPLE FREQUENCY OF 15 KHZ 

Mod Fault 

Id. 

Case fcm 

[Hz] 

θ [rad] υ [km/s] Dist. 

[km] 

Error 

% 

α C 

1 5850 2.087 295980 16.89 0.36 

2 5422 2.350 295920 17.08 0.26 

3 4995 2.670 295820 17.03 0.10 

β D 

1 4500 1.897 295770 22.94 2.20 

2 4200 2.176 295700 23.01 1.96 

3 3727 2.537 295580 23.64 0.13 

In the last case it was not possible to locate faults that 

generate a characteristic frequency less than that limited by 

Nyquist theorem (7500 Hz in this case) 

V.  CONCLUSIONS  

A simplified analysis, factor np in (1) only considers 

extreme cases of Zs. That means that imaginary part of Zs is 

considered large or small or Zs is considered as a real number. 

With former assumptions (1) can be used with an np equal to 4 

or 2. When Zs has intermediate values it is necessary to use 

another approach. To solve de problem, equation (16) were 

developed. This equation can perfectly take into account 

frequency dependence of line impedance, Zs and fault 

impedance. Thereby, the proposed approach is general and can 

be adapted to many situations.  

Equation (16) was developed for a single line case. Then, 

measurements in studied case have been decoupled with 

Clarke’s transformation and voltages at α or β modes were 

analyzed. α mode was chosen because line parameters have 

less variation with frequency. However, for BC faults it was 

necessary to use β mode because α have no information. 

Taking former considerations, errors on fault distance 

estimation were less than 1% in 60% of simulated cases and 

less than 3% on the rest for a sampling frequency of 1 MHz. 

Considering a commercial sampling frequency of 15 kHz, 

results are equal than with 1 MHz. Nonetheless, by limitations 

of Nyquist theorem, only faults located more than 15 km can 

be located. 

Effects of voltage transformer were not studied in this work. 

It is well known that they have quite limited frequency 

characteristic that may make impossible to directly implement 

the proposed method. In that way, present work was developed 

principally to give a new insight of fault location based on 

high frequency components. Another side of the physics 

involved is shown that may contribute in futures works.  
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