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 Abstract-- A method to accurately simulate frequency 

dependent transmission line models for large simulation time 
steps is introduced in this paper. This method is described with a 
phase domain model called Universal Line Model; however in 
general the method can be applied to any frequency dependent 
transmission line model in emtp-type programs. The proposed 
model is validated  by comparing the time domain simulations 
with an analytical solution obtained using the inverse Laplace 
transform method for simple linear terminations. 
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I.  INTRODUCTION 

ime  domain simulations involving frequency dependent 
transmission line models are widely used in power system 

transient studies. One limitation in traditional travelling wave 
based transmission line models is that the time step of the 
simulation should be less than the travel time of the lines. In a 
typical electromagnetic transient (emt) study using emtp-type 
software, the minimum simulation time step is limited by the 
shortest transmission line (or more precisely the transmission 
line having shortest travel time).     
   Reference paper [1] discusses a new transmission line model 
to simulate transients with a large time step. The model was 
developed using a linear interpolation method on Bergeron 
type model. One limitation of such model is that it does not 
consider the frequency dependent behaviour of the 
transmission lines (accurate only at the specified frequency). 
In contrast, frequency dependent transmission line models 
accurately consider both the frequency dependency of the line 
parameters due to skin effect as well as distributed nature of 
the line and hence these models are widely used in many 
electromagnetic transient studies [7], [8]. 
   In transmission line modelling, the transmission line 
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equations in terms of propagation function and characteristic 
admittance are first formulated in frequency domain. Next 
using techniques such as vector-fitting, above functions are 
approximated (curve-fitted) using rational functions [2],[6]. 
Finally, the recursive convolution algorithm is used as a 
means to convert frequency domain equations with curve-
fitted functions into a time domain equivalent circuit, which 
can be readily implemented in emtp-type algorithms [3]. The 
recursive convolution algorithm associated with the 
propagation function contains a travel time term. However, 
this approach requires that   time step is smaller than the travel 
time of the transmission line. The typical time steps can be 
1/10th  or 1/5th of the travel time.  
    This paper proposes and discusses a new method in which 
the recursive convolution algorithm associated with the 
propagation function is modified so that the convolution gives 
accurate results even when the time step is larger than the 
propagation delay. The method is based on modifying the 
coefficients of convolution algorithm to approximate the 
effect of the small time step and also by applying linear 
interpolation technique. The validity of the proposed method 
is demonstrated using an example involving a short single-
conductor transmission line model. This method gives fast, 
accurate and numerically efficient time domain simulations for 
electrical networks having very short transmission lines 
modelled with frequency dependent characteristics.  

II.  LARGE TIME STEP MODELLING 

The convolution associated with the propagation function 
and arbitrary function q(t) can be written in discrete time as 
[3],  

 
)()()()( 321 ttskttqktqkts    (1) 

 
where, s(t) is the value of the convolution at time t and k1, k2 
and k3 are constants. τ is the travel time (see Appendix B for 
further details).    
    Equation (1) is evaluated by selecting a small time step 
compared to travel time (Δt, Δt< τ). Also the (N +1, N = τ/ Δt) 
history values of q(t) are stored in memory to calculate the 
convolution at current time step.   
    For a large time step (τ < dt), equation (1) can be modified 
based on linear interpolation as shown below. The linear 
variation of the function q(t) is assumed between time steps as 

T



shown in figure 1.  
 

 
Fig. 1.  Linear interpolation between time steps (t), (t- Δt) and (t-2Δt ) 
 

Using linear interpolation, the function q(t) can be written as,  
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   By substituting in (1), the convolution becomes 
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In contrast to (1), it can be seen that only two history values of 
function (q(t)) are required to be stored in memory to use at 
the current time (t); hence, the computer memory requirement 
is less compared to simulating a short transmission line with 
small time step (Δt, Δt< τ). Another difference is that the 
modified convolution is not merely a history term. It uses the 
current value of q(t).  
Figure 2 represents a short single-phase transmission line 
where v and i are time domain voltages and currents at the 

sending and receiving-end terminals respectively. Subscripts 
‘k’ and ‘m’ respectively denote the sending and receiving-ends 
of the line. 
 

 
Fig. 2.  A short transmission line showing receiving-end and sending-end 

voltages and currents. 

 
By applying the proposed modified convolution technique, the 
transmission line equations in time domain becomes (see 
Appendix A for more details). 
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(4) 

 
where,  1  and 2  are constants and ihist1 and ihist2 are derived 

based on history voltages and currents only  for last two time 
steps (at t = t-Δt and t = t-2Δt ). In the  traditional line model, 
ik (t) is only a function of vk (t) and vm(t)  affects only through 
the history terms. However, once the interpolation is carried 
out, even the present value of vm(t) affects ik(t) i.e., 2  is non-

zero.  Hence it can be seen that the voltages and current at 
either end of the line are coupled in this formulation.  

III.  SIMULATION EXAMPLES 

Time domain simulations involving short transmission 
lines with large time step were conducted  to verify the 
validity of the proposed method. 

A.  Short circuit test   

A short circuit test is performed in order to validate the 
modified transmission line model for large time steps. The 
simulation is compared with the results from Numerical 
Inverse Laplace Transform method (NILT). The 3 km cable 
was energized with a step voltage (1 kV) and the receiving-
end is connected to ground through a very small resistance. 
The cable data is shown in the table 1.  
 
 
 
 
 
 
 
 
 
 



TABLE I 
CABLE DATA 

 
Parameter Units Value 
Inner radius of the conductor m 0.022 
Resistivity of the conductor Ωm 1.68e-8 
Relative permittivity of 

insulation 
 4.1 

Outer radius of the insulation m 0.0395 
Sheath outer radius m 0.044 
Resistivity of the sheath Ωm 2.2e-7 
Outer radius of outer insulator m 0.0475 
Relative permittivity of outer 

insulator 
 2.3 

 
Figure 3 shows the sending-end current for different 
simulation time steps (∆t = τ, 5τ, 10τ and 20τ) and also for the 

reference solution (NILT) for the time frame [0 to 2s]. The 
travel time (τ) for the cable is 20.258μs. The simulation results 
for large time step are in a close agreement with the reference. 
Figure 4 plots the error as compared to the reference solution.  
Figures 5 and 6 show the same simulation results for the time 
frame [0 to 0.01s]. As the simulation time step increases, the 
error increases due to approximations in the linear 
interpolation algorithm.  
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Fig. 3.  Sending-end current vs. time for t =  [0 to 2s] 
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Fig. 4. Log of absolute error vs. time for t = [0 to 2s] 
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Fig. 5.  Sending-end current vs. time for t = [0 to 0.01s] 
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Fig. 6. Log of absolute error vs. time for t = [0 to 0.01s] 
 

B.  Comparison with alternate approaches ( π- model) 

For the time domain simulation studies, involving very 
short and relatively long transmission lines, the short 



transmission line is sometimes modelled using a π-model. 
This allows time-steps larger than the travel time of the small 
line to be used. This section compares the performance of the 
proposed short transmission line model with that of π-model. 
Note that the π-model is accurate only at a specified 
frequency. 

Figure 7 shows the test circuit used to compare the two 
transmission line models (proposed method and π-model). 
Two transmission lines (a short cable and a relatively long 
overhead line) are connected in series and energized with a dc 
voltage (1 kV) with an initial 0.2 ms ramp-up time. The cable 
data is the same as that of the cable used in section (III.A). 
The lengths of the cable and the overhead transmission line 
are 1 km and 30 km respectively with corresponding travel 
times 6.737 μs and 100.226 μs.   

The  line is first modeled using the conventional approach 
on  the PSCAD/EMTDC  using a very small time step (∆t = 

τ/10,  where τ = 6.737 μs). These results are considered as the 
accurate template for comparing the various higher-timestep 
models (reference simulation). 

 

Fig.7. example circuit 

 
In the first test, the receiving-end of the 30 km line is kept 

open. Three different sets of simulation are conducted: 
 

i. using π-model for the short line, and the conventional 
approach (∆t <τ,  where ∆t = 0.6737 μs) for the 

long line 
ii. using proposed line model with time step (∆t) = τ, 

where tau is travel time of the short line 
iii. using proposed line model with time step (∆t = 5τ). 

 
Figure 8 shows the current (Ik) measured between two 

transmission lines for the time period [0, 5ms]. In this case, 
the equivalent π-model is created for the specified frequency 
of 0.01 Hz (as the excitation is almost dc) so that the steady 
state response is accurate.  It is clearly seen that the proposed 
short line model is in close agreement with the reference for 
time steps ∆t = τ and even for ∆t = 5τ. However a noticeable 

difference can be seen when using the π-model due to the fact 
that the pi-model is accurate only at very low frequency and 
gives some error at higher frequencies. 
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Fig.8. Sending-end current  vs. time for open circuit study 
 
In the second test, the equivalent π-model is  derived for a 

higher frequency (2.3 kHz – of the order of the observed 
frequency in the reference simulation). Figure 9 shows the 
corresponding results for the open circuit test. The figure 
shows the reference simulation, the pi model (2.3 kHz fit), and 
the results of the proposed model with the two different time 
steps.  In this case, the π-model is also in a close agreement 
with the reference. 
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Fig.9. Sending-end current vs. time with different π-model for open circuit 
study 

 
However, when a remote line to ground fault is applied at 

the   overhead line’s   receiving end, there can be errors. 
Figure 10 shows the current (Ik) for the time period from 0 to 
0.8s. The current in case of equivalent π-model does reach the 
correct steady state value. This is not surprising because 
evaluating the π-section for 2.3 kHz results in an inaccurate 
model at dc frequency.  Nevertheless, the  proposed model 
with large time-steps as large as 5τ accurately reproduces the 
reference waveform. Note however, that the ∆t must be small 

enough (i.e., smaller than that dictated by Nyquist–Shannon’s 
sampling theorem [9]) to handle the maximum frequency that 
is applied to the circuit. 



   As a summary, the proposed model gives accurate results for 
a  wide frequency range. However the equivalent π-model is 
only accurate at specified frequency. For an example, if the 
specified frequency of π-model is selected to obtain a correct 
steady state values, then transient response may not be 
accurate and vice versa.  
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Fig.10. Sending-end current vs. time for short circuit study 

IV.  CONCLUSIONS 

    The proposed transmission line model can be used to 
approximately simulate a short transmission line using a time-
step much larger than the travel time. The time step however, 
should still be small enough so that a sufficient number of 
samples of the applied excitation waveforms are obtained to 
provide an accurate representation of the signal (Nyquist–
Shannon’s Theorem). The traditional model requires that the 
time simulation step is less than the travel time of the 
transmission line, a limiting factor in a typical emt study with 
short transmission lines. 
    Compared to the traditional frequency dependent 
transmission line model with small time step, the proposed 
model uses significantly larger time-steps and fewer steps in 
the convolution (only information from the last two (large) 
time-steps is required).  
    It should be noted that simulating transmission lines with 
very small simulation time step (Δt<< τ) always gives 
accurate results, but results in significant computational effort. 
However, the proposed model gives sufficiently accurate 
results with significantly less computation effort. It is 
recommended for   simulating an electrical network having a 
mixture of long transmission lines and as well as very short 
transmission. The proposed line model includes frequency 
dependent effects and so has a wide frequency range of 
accuracy.  Depending on the study, the emt  user may 
carefully decide which short transmission lines are to be 
represented by the proposed model, resulting in minimum 
impact on the simulation result.  
   Application of this method to more general multi-conductor 
frequency dependent transmission line models is currently 

under investigation and will be presented in a future 
publication. 

V.  APPENDIX A  

A.  Transmission line equations  

This section briefly describes the modeling of frequency 
dependent transmission line modelling for a single conductor 
lines.  The frequency domain solution of the traveling wave 
equation can be expressed as [4],  
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(A.1) 

 
In the above equations, V and I voltage and currents and 

subscripts ‘k’ and ‘m’ denote sending-end and receiving-end 
of the line. Yc and A are the characteristic admittance and  the 
propagation functions respectively. In order to implement the 
model in the time domain, Yc and A are approximated with 
rational functions of suitable orders M and N [5] in the form 
shown below in (A.2) and (A.3).  
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The unknown coefficients, cp, ap aq, cq and d are calculated 

using a technique called Vector Fitting [2]. Note that the time 
delay (τ) in equation (A.2) is estimated before the fitting 
procedure.  

B.  Modified equations for large time steps 

The product of two frequency domain functions in (A.1) 
can be written as a convolution in time domain. 
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The lower case letters represent the corresponding time 

domain form of the upper case variables. Using recursive 
convolution technique [3], )()( tvty mc   and )()( tvty kc   can 

be written as  
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The yeq is a constant and ihm and ihk are history current 
terms. The convolution )()( tfta m in (A.4) depends on the 

travel time (τ). Based on the modified interpolation technique 
discussed in section II for the large time step, )()( tfta m can 

be written as, 
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The 0 and 1 are  constants and iha is a history current 

term. By substituting in equation (A.4), the sending end 
current becomes, 
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Similar equation can be derived for the receiving-end and 
the formulas can be rearranged in the following matrix form 
shown below. 
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where,  1  and 2  are constants and ihist1 and ihist2 are 

derived based on history voltages and currents only  for last 
two time steps (at t = t-Δt and t = t-2Δt ). 

VI.  APPENDIX B 

A.  Recursive convolution 

Frequency dependent transmission line modeling involves the 
evaluation of the convolution in discrete time. The 
mathematical technique called recursive convolution is a 
numerically efficient technique to perform the evalution [3]. 
Consider the convolution of two frequency domain functions 
p and q. 
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   For the recursive convolution, both of the two functions in 
(B.1) should be expressed as a sum of exponentials as shown 
in (B.2).  
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   The terms ci, ai are pre-determined using the curve-fitting 
technique and the time delay (τ) is the travel time of the 
transmission line (see Appendix A for further details). Then 
discrete form of s(t)  is shown in (B.3) in terms of history 
values of  s(t) and q(t). 
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The constants k1, k2, k3 in (3) are derived based on the 

assumption that q(t) has a linear variation between t-τ-Δt and 
t-τ and the constants are, 
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