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 Abstract—This paper contributes towards the establishment 

of a formal analysis method of control system equations solved 
through fixed-point iterations. The success of fixed-point 
iterations relies on contraction properties of the function to be 
iterated. A convergence criterion is presented and accuracy is not 
sacrificed over gain in computational time. 

The presented algorithms are illustrated in EMTP-RV for 
practical control systems used in wind power generation and for 
a user defined model case. Limitations and performances are 
discussed in relation to the Newton method. 
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I.  INTRODUCTION 

N iterative Newton method for the solution of control 
system equations in Electromagnetic Transient (EMT) 

type simulation methods has been proposed in [1]. Although 
such a method is a robust and systematic approach, there are 
some feedback based control system diagrams that can also be 
solved using the much simpler and sometimes more efficient 
fixed-point (FP) method. The efficiency level of the FP 
method can be very high since it sequentially evaluates the 
control blocks and does not require time-consuming 
linearization procedures and matrix formulations required in 
the Newton method. The difficulty lies on the determination of 
whether or not the FP method can converge, for a given case, 
before it is actually undertaken. 

Moreover, in some classes of control equations, the model 
loops may lead to algebraic constraints. In such case, basic 
sequential evaluation of blocks outputs is not applicable. 
Different approaches are undertaken to reformulate models in 
order to apply sequential solution. One approach used in [2] 
consists in breaking algebraic loops. This is formally 
acceptable when the loop is artificial, i.e. when it can be 
eliminated without compromising the physical behavior of the 
model. Specific tools are dedicated to achieve such 
elimination [3]. However, some cases require algebraic 
constraints that can not be easily eliminated. A possible 
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solution consists in re-organizing blocks to eliminate algebraic 
loops while still maintaining functionality, but as pointed out 
in [3], this may become prohibitively difficult. 

In addition, while such loop-breakings are valid for some 
classes of control equations, it was proven that they may fail 
for others, for instance, when certain nonlinear (NL) blocks 
appear in the feedback path [1]. In fact, loop-breaking may 
compromise viability or accuracy requirements. A highly 
accurate algorithm should handle algebraic loops by solving a 
set of NL simultaneous control equations while, however, 
increasing the computational time. There is hence a dilemma 
between lowering accuracy requirements and increasing 
simulation speed.  

It is proposed in this paper to analyze control equations to 
formally display the contractive properties of loop paths. The 
success of FP method relies on contraction properties of the 
function to be iterated [4][5][6][7]. The functions to be 
iterated were introduced in the formulation of control 
equations in [8] and specific variables were isolated to fully 
represent complex looped control systems. It is proposed, in 
this paper, to study those functions by analyzing the Jacobian 
matrix in association with isolated variables representing the 
feedback loop path. Graph theory techniques are used in that 
purpose. The consideration of such properties may widen the 
usage of FP methods. When the convergence criterion is 
established, accuracy is not sacrificed over gain in 
computation time. Additional iterations permit reaching 
predefined tolerance. 

The analysis proposed in this paper is illustrated for 
practical control systems in the study of power systems 
transients, including wind power generation and user defined 
algebraic equations for an electrical machine model. 

This paper contributes to the establishment of a formal 
analysis method of control system equations which permits a 
safe use of efficient FP methods.  

II.  THEORITICAL BACKGROUND  

The literature on theoretical and fundamental aspects 
related to the FP method is abundant [4]. We will thus restrict 
our review to the solution of systems of equations of the form: 

 e φ e     (1) 

where φ  is a vector function and e  is the vector of 

unknowns. A solution ê  of (1) is said to be a FP of φ , since 

φ  leaves ê  invariant. The classical approach starts by setting 

an initial vector 0e  and computing  1 0e φ e  to continue 

iteratively (iteration counter is k) with successive evaluations 

A 



 1 k ke φ e  until convergence. The contraction mapping 

theorem gives sufficient conditions under which there is a 
fixed point ê  of (1). It is defined, in general, from 
mathematical theory [4][5][6]. Formally a vector-valued 
function φ  is a contraction at a point ê  if a constant   

exists, with 0 1  , in such a way that: 

   ˆ ˆ  φ e φ e e e     (2) 

for all e  sufficiently close to ê  and where .  is a specific 

norm to be defined. In discrete dynamic system simulations 
we are concerned with here, one focuses specifically on 
Euclidean space. Also, some assumptions are made including 
at least, that all elements of φ  are piecewise-continuous and, 

also, that the derivatives of control block functions are well 
defined and are not infinite. Similar assumptions are made for 
Newton methods [6],[9].  

The following condition of contraction [7] is used in this 
paper: 

 ˆ 1
spectral

 φ e     (3) 

where .
spectral

 is the spectral norm and φ  is the Jacobian 

matrix of φ . The vector-valued φ  is a mapping of vector-

valued, possibly nonlinear functions, defined through 
algebraic equations representing a discrete dynamical system. 
Thus we assume, in EMT-type simulations, a suitable 
discretization of models (using Trapezoidal rule) at a given 
time-step, such that all terms including history, inputs and 
outputs of models can be expressed as (1). In the following 
section the formulation of φ  is recalled from [8]. 

III.  FIXED-POINT ITERATIONS: FORMULATION AND 

APPLICATIONS  

A.  Functions on feedback paths  

The vector-valued functions on feedback paths that were 
presented in [8] are recalled here for the presentation of (3). 
Simultaneous systems of equations can be represented as 
feedback equations [8]. Basically, a proper cutset is introduced 
on the graph of control equations in such a way that all cycles 
are eliminated. The set of variables pertaining to that cutset 

represent the feedback variables β̂  [8]. In other words, the 

cycles which were removed by cutting each of feedback 
variables represented by the feedback paths on the graph of 
the control system. The all-zero eigenvalues condition for the 
adjacency matrix of the graph can be applied for testing that 
no cycle remains [10], [11]. This approach provides vector-
valued functions G  and φ  for formulating the objective 

function Φ  in the application of the Newton method. For a 
generic case, the system can be represented as 

 e φ u, y     (4) 

  y G e     (5) 

where u  holds the vector of independent inputs, y  is found 

using the application sequence G  of the control diagram 

paths on e  and the Newton solution is based on:  

    Φ e φ u,y 0    (6) 

where e  holds for feedback variables associated with the 

cutset β̂ .  
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Fig. 1 Phase-locked Loop (PLL) control system from [1] 
 

For illustration purposes, let consider a Phase-Locked Loop 
(PLL) control studied in [1] and presented in Fig. 1. The 

process of [8] presented above leads to the set β̂  of two 

feedback functions  3 4,f f . The new (reduced) system of 

equation is consequently given by: 

 
 

1 1 1 2

2 2 1 2

,

0 ,

e u G e e

e G e e

 

 
   (7) 

where the application sequences (sequential evaluations) are 
defined by: 

   
   

1 16,15,14,13,12,10,9,8,7,6,5

2 11,10,9,8,7,6,5

G f

G f





e e

e e
 (8) 

and  1 2, e ee  is the vector of new variables. The FP 

iterations (FPI) are now defined as: 

  1k k e φ G e    (9) 

Successive FP iterations on (9) will converge for some 
classes of control systems complying with the contraction 
mapping theorem recalled in section II.  The convergence 
criterion adopted from [14] is given by:  

1k k

tolk


 

Φ Φ

Φ
.   (10) 

where tol  is a relative tolerance on the objective function 

and .  is the Euclidian norm (other equivalent norms may be 

used). The objective function (6) is rewritten as:  

  1 1  k k kΦ e φ G e .   (11) 

B. Application cases  

    1)  Phase-Locked Loop 
The method proposed in the previous section is applied to 

the PLL presented in Fig. 1. The contraction condition is 
respected for a sufficiently small time-step ( 1μst  ) and the 

found solution is thus comparable to the Newton method 
solution, using the same t . In this case, the FP is clearly 
disadvantaged, especially when considering that larger time-



steps [1] can be used with the Newton method. Computational 
performances are summarized in TABLE 1. 
 

TABLE 1 COMPARISON OF SIMULATION TIMES FOR NEWTON AND FP 

METHODS,  PLL CASE  

Tolerance 
relative/absolute 

Gain in simulation time 
FPI vs. Newton 

1e-3/1e-8 0.96 
1e-4/1e-9 1.00 
1e-5/1e-10 1.02 

 
    2)  Simulation of an asynchronous machine 

The FP method is applied here for the solution of a user-
defined model through control diagram equations for an 
asynchronous machine model [1]. It comprises 87 blocks 
including 23 feedback variables. Performances are compared 
in TABLE 2. Accuracy is assessed in Fig. 2 by comparing the 
Euclidean norms of relative errors for ten signals. Accuracies 
of currents at the stator and at the rotor are not acceptable 
when a single iteration of FP is applied. Setting a fix number 
of iterations regardless of predefined tolerance is obviously 
inefficient, since unnecessary iterations may be performed. 

It is emphasized that techniques with loop-breaking will not 
successfully solve this system. 
 
TABLE 2 COMPARISONS OF SIMULATION TIMES FOR NEWTON AND FP 

METHODS, ASYNCRONOUS MACHINE MODEL  

Tolerance 
relative/absolute 

Time step 
(μs) 

Gain in simulation 
time 

FP vs Newton 
200 2.02 

1e-4/1e-8 
400 1.75 
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Fig. 2. Euclidean norms of errors, asynchronous machine equations for FP and 
Newton methods, 200μs time-step. 

 

    3)  Wind power plant 
The FP method is applied here for the solution of a large 

scale power system comprising 72 aggregated wind generator 
models [12] integrated into IEEE-39 bus test system [13]. One 
of the hundreds of groups of control equations is presented in 
Fig. 3. The group has one feedback block (see the block SUM 
with notation FB). Efficiency is presented in TABLE 3. The 
simulation time-step is 50μs  for Newton and FP methods. 
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4-th group of control system in Wind Generator
Input 3

Kp

Ki

hi_limit

low_limit

PROD

SUM

f(u)
u[1] > 0

f(u)
u[1] < 0

1

2
select

Sel1
c 0

C6

++

sum2

c
1

C7

f(u)

u[1] >= hi_limit

f(u)
u[1] <= low_limit

PROD

u lim1

1

f(
t)

f(
t)

out

rc rv

f(t)=low_limit

f(t)=hi_limit

hi_limit

low_limit

Sig_u

Sig_u

 
Fig. 3. Sample group of 9 control blocks, 4 inputs and 4 constants, Wind 
Power generator Model [12], [13].  
 
TABLE 3 SIMULATION TIMES FOR NEWTON AND FP METHODS, LARGE SCALE 

WIND POWER PLANTS INTEGRATED INTO THE IEEE-39 BUS SYSTEM  

Tolerance 
relative/absolute 

Gain in simulation time 
FPI vs. Newton 

1e-3/1e-8 1.36 

IV.  FORMAL ANALYSIS OF CONTRACTION PROPERTIES  

A.  Spectral norms for presented cases  

The performance of the FP method is predicted and related to 
the spectral norm of (3). A larger norm will increase the 
iteration count in the FP method. If the condition (3) is not 
respected, the FP method will not converge. 
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Fig. 4. Spectral norms and iteration counts, PLL case of Fig. 1  
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Fig. 5. Spectral norms for Fig. 3 

 
Fig. 4 and Fig. 5 present the spectral norms for the PLL and 



wind power plant cases. Fig. 4 uses the feedback variables 1e  

and 2e  in Fig. 1. Fig. 5 uses the FB signal shown in Fig. 3. 

Here, the number of iterations is increased at system 
initialization and when a fault (short-circuit) is applied in the 
network. 

B.  Estimation of Norm Bounds 

The cells of the Jacobian φ  in (3) are partial derivatives of 

(4) with respect to each feedback variable: 

  



i i

ij
j

G
J

e

u, e
     (12) 

In the discrete time context, numerical perturbation is used 
for (12). Since  iG e  is a composite function on loop path, 

the loop perturbation concept introduced in [8] can also be 
used. Equivalently, with care on perturbation values [9],[14], 
block-by-block perturbation may also be used, as in [1]. In 
such condition, if rsc  is the partial derivative of the block 

function r with respect to input s, the perturbation value  s  

gives the estimated block function derivative: 

    
`

1
0, , ,


      

 rs r r s r
s s

c f f f
x

x x .  (13) 

The control system can be linearized to represent the Jacobian 
of the rank corresponding to the count of blocks as in [1]. 
Such representation is: 

1

 


 
N

r rs s
s

x c x      (14) 

where  rx  is variable. 

A representation of (14) is introduced. The lines (edges) 
represent partial derivatives and nodes (vertices) represent the 
variables. For illustration, the Coates graph of the PLL is 
given in Fig. 6. Similarly the Masson graph [15][16] may also 
be used, but with slight differences in the definition of 
equations. Equivalence between both graph representations 
may be found in [16]. 

In following lines the goal is the formulation of the 
topological characteristic of the Jacobian. The term 
“topological” is used here because the elements in the cells of 
the Jacobian are linked to the topology of the studied control 
system. The approach is based on edge-node reduction 

techniques on Coates graph [17]. This is also referred to as 
edges or vertices collapsing in other graph theory literature. 
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Fig. 7 Coates graph of a system reduced to two variable {x1,x2} for feedback 
path, PLL cases 
 

The approach based on reduction to feedback variables 
leads to the graph of Fig. 7 for the PLL case shown in Fig. 6. 
This graph is also the representation of the Jacobian associated 
to the reduced system in (8). The edges of the graph of the 
reduced system (see ijC ) in Fig. 7 are similar to the partial 

derivative of (8) in the linearized system.  
If the system is reduced up to M variables, the Jacobian of 

rank M becomes: 
    ijCφ ,    (15) 

Where, based on developments from [17]: 

     
 

   
1 ( 1)

   
per Con gij

L gij
ij

gij

K C gij
grfaX

grfaX

grfaX

grfaX

(16) 
where K ,  and other terms are defined as in the appendix. 
The evaluation of (16) for all ij 1-factorial connections and the 
norm associated to the Jacobian matrix yield the following 
condition complying with contraction property for 1-norm: 

 1
1 1 1

1 max 1


  

   
M

ij
i M j

K Cφ   (17) 

Equation (17) complies with (3). That is the norm bound 
we propose for formal analysis of contraction properties of the 
FP method. However, this bound is too complex for estimation 
in discrete dynamical simulation context. With the 
manipulation of inequality expressions and using [18], the 
following upper bounds are proposed: 

  1
1 1 1

max max ,

  

  
M

N
Max

i M j

K P i j cφ   (18) 

     1
1 max , 2 !      N

MaxK M N N M cφ (19) 
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Fig. 6 Coates graph for linearized representation of the PLL in Fig. 1 



 2 2
1 1   

M
M

j Max
j

M C M cφ   (20)  

where M and N are, respectively, counts of nodes of feedback 
variables and of all variables, K is the determinant of graph of 
nodes which are not feedback variables, cMax is the maximum 
partial derivative in the control system and  max ,P i j  is the 

maximum of the permanent of connectivity matrix of graph gij 
(see appendix). 

C.  Time-delay blocks in loop paths  

When there exist time delays in loop paths, FP iterations 
are “stationary”. The exact solution is found in a single 
iteration. Such condition is comparable to the loop-breaking 
mentioned earlier, which satisfies the contraction mapping 
theorem in (2) with any 0 1   and any 1k . However the 
breaks which will ensure such “form of delay” within the loop 
path should be applied on all feedback outputs. Or, at least, in 
such a way that all cycles will be “delayed”. Formally, with 
the graph representation, if the vertices associated to the 
location of delays are virtually cut, all eigenvalues should be 
zero in the adjacency matrix resulting from the cuts. On the 
contrary, if any cycle remains, there will subsist at least one 
non-zero eigenvalue. In general, with no time-delay blocks, 
the FP solution with single iteration may not converge. See, 
for example, the errors in Fig. 2.  

D.  Linear and bounded derivatives control equations 

Some classes of control system equations comprise only 
linear blocks. The Jacobian matrix is bounded taking into 
account the highest derivative of blocks which are constants 
for such linear system. For the simple case in Fig. 8, (15) and 
(16) yield: 

  5
1 2 5, ,      Maxprod c c c cφ ,   (21) 

where 1 2 5max , ,   Maxc c c c  is the highest absolute 

value of block derivatives. 

      4 3 2 1G e f f f f e

u


e

 y

 

Fig. 8 Simple case of one feedback path reduced from Fig. 10 

 
For illustration purposes, the contraction conditions are 
compared for the system in Fig. 8. Let assume that the 

derivatives of block functions are  0.7,0.5,0.4,j Maxc c    , 

where 1K  is the determinant of the graph in Fig. 13. The 
upper bounds of the Jacobian norms are presented in TABLE 
4 for the case of Fig. 8. The maximum count of iterations is 
100. 

For this simple case, it is clear that (21) is below one for all 
1Maxc  . For 0.75Maxc , for example, the norm bound 

condition (3) is respected. The FP iterations will successfully 
converge. Indeed, within a maximum of 13 iterations, all time 

points were solved as presented in Fig. 9. For other values of 

Maxc , the analysis shows that, up to around 7.1, condition (3) 

is respected. However, as presented in TABLE 4, for greater 
values, the spectral norm is higher than one and the FP 
iterations do not converge. The input signal u  is a sinusoidal 
input and time step is 200µs. 
 
TABLE 4 COMPARISON OF UPPER BOUND ESTIMATIONS 

cMax 0.75 25 50 
Jacobian norm 0.105 3.5 7.0 
Eq. (21) 0.27 9.76e6 3.12e8 
Eq. (17) 0.49 3.12e3 1.67e4 
Eq. (18) 0.49 3.12e3 1.67e4 
Eq. (19) 11.9 7.65e4 4.33e5 
Eq. (20) 0.273 9.76e6 3.12e8 
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Fig. 9 Illustration of FP iterations on different bounds of derivatives for linear 
cases: error are against analytic solution of Fig. 8.  

 
It is obvious however that some limiting cases appear for 

higher disparities between derivatives of blocks. The 
conservative conditions of contraction may fail while more 
accurate conditions may succeed, see for instance the bound 
(19) in TABLE 4. Also, if Maxc  is slightly greater than one, 

(21) will also failed while (3) will not. 
Similar analysis may be applied on a more general case 

including NL blocks, with bounded limits of derivatives and 
multiple feedback variables.  

V.  CONCLUSIONS 

This paper contributes towards formal analysis of fixed-
point (FP) iterations applied in the context of discrete 
dynamical simulation. Feedback paths on which iterations are 
applied were displayed and their contractive properties were  
analyzed. The FP itertations was applied to practical control 
equations in the simulation of electromagnetic transients. As 
the convergence of FP iterations is difficult to predict before it 
has been undertaken, some contractive bound limits were 
proposed but are limited to few classes of control systems. 

VI.  APPENDIX 

A formal representation of the reduction of the graph of 
control equations to feedback variables uses operations on 



Coates graph [17]. The process is illustrated below. 
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Fig. 10. Simple case for reduction of control equations to only FB variable  

 
The simple system in Fig. 10 has one feedback. Corresponding 
Coates graph before reduction and after reduction of nodes are 
respectively presented in Fig. 11 and Fig. 12. 
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Fig. 11. Coates graph of simple case in Fig. 10 for all linear blocks and single 
identified FB variable 
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Fig. 12. Coates graph of reduction simple case in Fig. 10 for lineriazed 
equations: gr(M)  
 

In the reduced system representation of equations, the 
Jacobian associated to the objective function is 11  C , 

where 11 1 2 3 4 5C c c c c c  is the branch gain in the reduced 

system, and rc  is the gain for r-th linear block or partial 

derivative of output of r-th block with respect to the single 
input. For multiple input blocks, corresponding notation is rsc  

as in (13). In general, branch gains are of the following form 
[17] (page 156): 

   

  

    ( 1)1
        

  
 

per Con gij L gij

ij
gij

C
K gij

grfaX grfaX

grfaX grfaX
 (22) 

where: 
- K  is the determinant of the sectional graph  N Mgr , 

such as in Fig. 13; 

-  gijgrfaX  : 1-factorial connection from node i to node j in 

the sectional graph gij ; 

- gij  : graph of eliminated nodes  N M , see in Fig. 13, 

combined to a pair of  ,i j  nodes of the new reduced system;  

-  : count of nodes in the graph gij ;  

-  L gijgrfaX  : count of loops in the graph gij ; 

 -   gijgrfaX  : Product of gains (or partial derivatives) of 

branches on sectional graph  gijgrfaX , i.e. 1 2 
iv Nc c c c  ; 

 -    per Con gijgrfaX  : permanent of the matrix of 

connectivity of the graph  gijgrfaX . The i-th row and the j-

th column of the connectivity matrix are eliminated. 
The Jacobian is given by 

    ijCφ ,    (23) 

Where ijC  is the branch partial derivative between two nodes 

in the reduced system evaluated as (22). 

4x
3x

2x

1x

1

1
1

1

 
Fig. 13. Sectional graph gr(N-M) of eliminated nodes ( not FB variables) 
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