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 Abstract-- The majority of the metal-oxide surge arrester 

(MOSA) monitoring techniques are based on total leakage 

current (TLC) decomposition on their capacitive and resistive 

components. However, these techniques are subject to some 

financial, technical and practical limitations which can to difficult 

their employment on field. In this paper, a new monitoring 

technique for MOSA is proposed. The technique is based on 

feature extraction of measured TLC signals and on analysis of 

these characteristics by special kind artificial neural networks 

(ANN) called Self-Organizing Maps (SOM). The evaluated 

measured TLC were obtained from station class MOSA 

submitted to their MCOV. On the lab tests, six different kind of 

failures were simulated on the tested MOSA with the purpose of 

to evaluate the technique capacity of distinguish different 

operating conditions of MOSA. Hit ratios greater than 98% were 

obtained on identification of the operating conditions. The results 

show the viability of the technique on MOSA monitoring 

procedures. 
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I.  INTRODUCTION 

ETAL-OXIDE surge arresters (MOSA) are equipments 

used for protection of electrical power systems against 

overvoltages. Thus, they contribute decisively for the increase 

on the reliability, economy and continuity of power system 

operation. Due to the importance of the MOSA, it is necessary 

the development and improvement of techniques and 

procedures to monitor and diagnose the MOSA operation 

condition correctly and accurately. Since, the surge arrester 

failure conduct non programmed power supply interruption, 

damage to other substation equipment, and risks to technical 

personnel. 

A set of methodologies commonly applied on MOSA 

monitoring and diagnosis is based on the measurement and 

decomposition of the total leakage current (TLC) across the 

surge arrester on the steady state operation. The leakage 

current is usually decomposed in its capacitive and resistive 

components, since the resistive component and its third 

harmonic present significant variations on the magnitude and 
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waveshape proportional to the MOSA degradation level [1]-

[4]. The analysis and interpretation of these variations are the 

base of the most common monitoring techniques found on 

literature. 

The main problem of the methods based on TLC decompo-

sition is the necessity of measure the applied voltage on the 

surge arrester or estimate angle phase difference between the 

leakage current and the applied voltage. To measure the 

applied voltage on site is hard task, since often there are: some 

difficult to access and to connect data acquisition systems to 

measurement devices (such as potential transformers); the 

influence of the neighbors transmission lines on the 

measurement; and the influence of the parasite capacitances on 

the voltage phase angle along the arrester housing [4]. These 

troubles can to make impossible the MOSA diagnosis. There 

are some methods [2] that claim to overcome the difficulties 

mentioned, yet make use of a series of simplifications and 

approximations that compromise the accuracy of the results 

provided. 

Thus, it is evident the necessity of to develop MOSA 

monitoring and diagnosis methods that can be applied on site 

more easily, showing reliable results which aid the technical 

substation personnel in predictive and preventive maintenance 

activities. In this paper, it is proposed a new technique for 

MOSA monitoring and diagnosis. The technique is based on 

analysis of the feature extracted of surge arresters total leakage 

current. The voltage measurement is not necessary. 

II.  PROPOSED TECHNIQUE 

The harmonic distortion level and the total current 

magnitude (especially, its resistive component) are important 

indicators of the MOSA degradation level [3], [4]. Thus, it 

seems reasonable to extract features of the total current in 

order to train a classifier of defects or failures. However, it is 

noteworthy that the approach proposed here differs from those 

commonly used in the literature, i.e., approaches based on 

decomposition of the capacitive and resistive components of 

the leakage current. In this paper, it is proposed that the 

characteristics used by the system for monitoring and 

diagnosis are extracted from the signal of total leakage current 

and not the resistive component. Thus, it avoids a number of 

practical and technical restrictions. 

In Fig. 1 is presented an overview of the proposed 

methodology [5]. Initially, arresters total leakage current signal 

are obtained in laboratory or field. Then the signals feature 

extraction (relevant harmonic components) is carried out. 

From the extracted features is built a database of features, 
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which is used in the training and testing phases of a system of 

classification of defects based on Artificial Neural Networks. 
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Fig. 1.  Proposed methodology overview. 

III.  TOTAL LEAKAGE CURRENT MEASUREMENTS 

The total leakage current was obtained from maximum 

continuous operation voltage (MCOV) tests carried out in 

laboratory for station class surge arresters. The diagram of the 

experimental arrangement used on the tests is shown in Fig. 2. 
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Fig. 2.  Experimental arrangement diagram. 

The experimental arrangement is composed by a adjustable 

voltage source, a voltage regulator, a elevator transformer, a 

protective resistance, a capacitive voltage divider, the test 

object (the surge arresters) in series with a shunt resistance. 

The voltage divider was used only to monitor the applied 

voltage. The current signal was obtained from shunt resistance 

and a data acquisition system composed by voltage probes, 

digital oscilloscope, and a PC. 

A.  Evaluated Samples 

The testing of MCOV application and current measurement 

was carried out in some station class surges arrester with rated 

voltage and MCOV of 92 kV and 76 kV, respectively. These 

equipments had different levels of conservation. The evaluated 

surge arresters had their levels and types of degradation 

changed during the tests, by inserting failures produced 

artificially in laboratory. Altogether, 07 different types of 

MOSA operating conditions were evaluated in the tested 

samples. The conditions corresponded to the good condition 

and typical failures found in surge arresters [3], [5]-[9]: sealing 

loss, superficial pollution, varistors degradation, internal 

humidity, displacement along the active column, and non-

uniform voltage distribution. 

The purpose of testing different surge arresters samples 

with several distinct operating conditions was to evaluate the 

capability of the proposed technique to detect these conditions 

by analyzing only the total current, i.e., proving that it is 

possible to perform the MOSA monitoring and the 

identification of different operating conditions from the total 

leakage current measurement and analysis, without obtaining 

the resistive component of the current or employing complex 

measurement arrangements. 

The evaluated MOSA operating conditions are described 

below. 

B.  Evaluated MOSA Operating Conditions 

The first condition considered in the testing of the MOSA 

was the good condition. In this case, the tested surge arresters 

presented characteristics and behaviors similar to the nominal 

ones. Then, typical failures found in ZnO surge arresters were 

artificially inserted in the evaluated samples. The faulty 

conditions are described: 

 Sealing loss: characterized by the loss of physical 

isolation between the environment and the interior of 

the surge arrester, allowing the exchange of gases. 

The loss of sealing was created artificially in the la-

boratory by opening communication channels be-

tween the environment and the interior of the arrester, 

allowing the exchange of heat and gas. 

 Internal humidity: can occur in surge arresters due 

to failures in the manufacturing process at the mo-

ment of the sealing, or by sealing loss caused by the 

natural aging process of the equipment. To simulate 

this defect, the arresters were opened and water was 

aspersed in the varistor column. Then, the arrester 

was closed. 

 Superficial pollution: occurs due to the presence of 

pollution on the surge arrester housing. To simulate 

this defect, a salt suspension was aspersed on the en-

tire porcelain of the surge arrester. 

 Varistor degradation: can occur due to natural or 

precocious varistor aging. To simulate this failure in 

laboratory, damaged varistors were inserted in the 

arrester active column. The varistors were damaged 

by the electrical stress produced by the application of 

current impulses and overvoltages. 

 Displacement along the active column: generally 

occurs due to inadequate transportation or storage of 

the surge arresters. However, this kind of problem 

may be caused by the manufacturing process due to 

assembly errors. In the simulation, displacements in 

the active column were performed. 

 Non-uniform voltage distribution: occurs due to 

failures in the arrester project or superficial pollution 

on the arresters. In the simulation of this kind failure, 

several assemblies were used with internal short-

circuited varistors, therefore, modifying the electrical 

field distribution along the arrester. 



IV.  FEATURE EXTRACTION PROCEDURE 

The next step in the methodology consisted of extracting 

relevant features of current signal to enable the creation of 

rules to distinguish the surge arrester operating conditions. The 

distortion level and the magnitude of the current in MOSA are 

important indicators of the surge arrester degradation level [1]-

[4]. So, it is reasonable to think that the harmonic components 

of the total current signal constitute a set of features for the 

effect of monitoring and diagnosing MOSA. 

Here, the extraction of the harmonic components of current 

signal was performed by an adapted version of the parametric 

identification technique proposed in [10], which consists of 

automatically determining the parameters of the equation 

(mathematical model) that represents the behavior of MOSA in 

a low current region. To determine the best model that self-

adapts well to the measured current signals, several tests and 

adjustments on the model were made. After this, it was found 

that the model which best represented the measured data was 

(1) which consists in the sum of the first five odd harmonic 

components of the signal. 
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The identification parameter technique is based on the Non 

Linear Least Squares method associated to the Levenberg-

Marquardt optimization algorithm. The technique is used to 

estimate the parameters (magnitude and phase angles) of (1), 

so as to minimize the error between the signal reconstructed 

from the model with identified parameters and the measured 

signal, i.e., to minimize the following equation (objective 

function): 
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where the )(xr  function ( T)(xr is the transpose of )(xr ) is 

called residual and is defined by: 

cm ssxr )(  (3) 

where: 

x  n-dimensional parametric vector ),( iiA x 5,...,1for i ; 

k is the number of samples in the total current signal; 

ms  is a k-dimensional vector corresponding to measured and 

digitalized current signal; 

cs  is a k-dimensional vector corresponding to reconstructed 

signal obtained from application of x  in (1). 

 

To obtain a vector x  that minimizes (2), the updates given 

by (4) must be performed, until a pre-established stopping 

criteria (invariance on (2), for example) of the iterative 

procedure is satisfied. 

dxx  0  (4) 

where 0x corresponds to an initial guess of the parameters to 

be determined (magnitudes and phase angles of harmonic 

components) and d  (search direction) is the update given to 

parametric vector x  on each iteration of Levenberg-Marquardt 

method, with the purpose of minimizing (2). 

The search direction, d , is obtained by the resolution of the 

following system of equations: 

gdH   (5) 

where H  and g  correspond to the Hessian matrix with the 

update of the Levenberg-Marquardt method, and to the 

gradient of the objective function (2), respectively. 

The gradient and the Hessian matrix can be obtained in 

terms of the Jacobian matrix of )( 0xr as shown in (6) and (7), 

respectively. The damping factor   in (7) is a strategy of the 

optimization method to guarantee that the Hessian is positive 

definite and the search direction always conducts to local 

minimizer of (2). I is the identity matrix. 
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V.  FEATURE EXTRACTED DATABASE BUILDING 

Since the total current features (harmonic components) 

have been extracted, it is possible to build a feature database 

of the all measured signals. This database is utilized in the 

training and testing of the MOSA operating condition 

classifier. 

The set of model parameters returned by the feature 

extraction method, ),( iiA x 5,...,1for i , correspond to the 

amplitudes and phase angles of the evaluated harmonic 

components of the signal. After some analysis, it was observed 

that the phase angles did not provide good correlation of the 

signal and the MOSA condition, since there is not any phase 

angle of reference. So, the phase angles are discarded in the 

construction of the database. Another important pre-processing 

phase on database building was the normalization of the 

harmonic amplitudes in relation to the fundamental 

component. After this, the fundamental component can be 

omitted from the final database. 

With these pre-processing phases, the dimensionality of the 

problem is reduced to only 4 input variables, the normalized 

amplitudes of the remaining harmonic components. Finally, it 

was constructed two feature database. The first one is applied 

to identify just the MOSA operation condition, i.e., if the surge 

is defective (label def) or not (label ok). The second database 

is composed by labels that identify not only the arrester 

condition, but the type of failure present in the equipment. In 

Table I are presented the labels used for each one of the surge 

arresters evaluated operation conditions. 



TABLE I 

LABELS FOR MOSA OPERATION CONDITION 

Operation condition Label 

Label type 1 

Good ok 

Defective def 

Label type 2 

Sealing loss est 

Internal humidity umi 

Superficial pollution pol 

Varistor degradation deg 

Displacement along the active column des 

Non-uniform voltage distribution dis 

 

Therefore, the general format of the databases is as shown 

in Table II, where the section Inputs refers the normalized 

amplitudes of the parameter vector x  and the section Outputs 

refers to the MOSA operation condition labels shown in Table 

I, for each type of label. 

 
TABLE II 

GENERAL FORMAT OF EVALUATED DATABASES 

Inputs Outputs 

15141312 //// AAAAAAAA  Label 

VI.  OPERATION CONDITION CLASSIFIER 

In this work a operation condition classifier based on a 

special kind of Neural Networks is used. The is called Self-

Organizing Map (SOM) [11]. The SOM network is based on 

competitive learning and non supervised training algorithm of 

the type feed-forward. In SOM network, the artificial neurons 

are put on nodes of a neural grid (usually one-dimensional or 

two-dimensional) with hexagonal, rectangular or triangular 

topological forms. Each neuron is connected to all network 

inputs. 

The network has a basic topology of two layers: the input 

layer I, responsible for reading the input vector and present to 

the network the information to be classified; and the output 

layer U, which form a response. The network input 

corresponds to a vector in the d-dimensional space in 
d
, 

represented by: xk = [1, …, d]
T
, (k = 1, …, n), where n is the 

number of input vectors. Each neuron j for the output layer 

holds a code vector w, also in 
d
 space, associated to the 

input vector xk, wj = [wj1, …, wjd]
T
. 

The neurons of the SOM network are locally interconnected 

by a relation of neighborhood, determining the map topology. 

In a two-dimensional map, the vicinity may be hexagonal or 

rectangular. The Fig. 3 displays an arrangement with 

rectangular neighborhood of dimension X  Y. In the same 

figure, it is observed the winner neuron (green) and its 

immediate vicinity with six neurons (red). The shape of the 

arrangement directly influences the adaptation of the SOM 

network, where the hexagonal model traditionally provides 

best results than the rectangular ones [11]. 
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Fig. 3  .  Example of bi-dimensional (X  Y) SOM network. 

 

The sequential learning algorithm of the SOM network is 

composed by three stages: (i) competition, (ii) cooperation and 

(iii) adaptation. In the competition stage, for each input data 

presented to network, the neurons compute the activation 

values and the one with higher value is the winner of the 

competition or the Best Match Unit (BMU). In the second 

stage (cooperation) is defined the vicinity of the BMU 

according with an neighborhood function h(t). In the last stage 

(adaptation), the code vectors (weights) of the winner neuron 

and of its neighborhood are adjusted. With the adjustment of 

the code vectors, the response of the winner neuron is better 

for a subsequent application of the same input vector. So, the 

input data provide a topological organization of the network 

neurons.  

A.  Training Module 

The operation condition classifier has training module, as 

shown in Fig. 1. In this module, the built databases are 

processed and used on the SOM network training. After this 

phase the SOM network will be topologically adjusted to 

recognize new patterns and grouping according their 

similarities. 

B.  Classification/Diagnosis Module 

On the classification/diagnosis module is implemented the 

methodology to identify the correlation level between each 

class (defective or not) of the trained network with the 

evaluated signal. So, it is possible determine the arrester 

condition. 

Additionally, during the train phase, the classification 

module can be used to yield a estimative of the classifier hit 

ratio. This is possible because in the training phase some pairs 

MOSA conditions and current signal are known in advance. 

Thus, if the arrester condition estimated by network coincide 

with the desired condition, the classifier hit in the arrester 

diagnose. Otherwise, the classification error rate is increased. 

VII.  RESULTS 

There is a set of mechanisms to evaluate the quality of the 

map obtained after the learning process, such as the vectorial 

quantization error [11]. The quantization error (Eq) 

corresponds to the average of the error related to difference 

between the characteristics vector (xk) and the code vector 



(wBMU), which is the winner code vector in the competitive 

process to input xk: 
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To evaluate the accuracy of the system, it was used the 

Correct Classification Rate (CCR), which is defined by: 

,100
t

c
CCR  (10) 

where c is the number of data input correctly classified and t is 

the total number of data input. 

The choice by the network size does not follow well 

defined rules. There are some heuristics rules, but it is 

consensus among the researchers that it must to test several 

network configurations before to decide the best parameters 

for a specific data set [11]. For great data sets, normally, large 

maps are more adequate. However, there are losses in 

algorithm training performance. An equilibrium point between 

the map (grid) size and the accuracy must be found. So, the hit 

ratio (CCR), the quantization error (Eq), and training time 

(Tp) of the network were plotted for SOM nets with grids 

varying of 3x3 until 22x22 (n x n, means n neurons on the two-

dimensional space). The parameters of comparison were 

normalized with relation to the maximum value obtained 

during the tests for made the analysis independent of the 

computational system and make easy the results visualization. 

In the Figs. 4 and 5 the evolution of comparative parame-

ters in function of the neural grid dimension are plotted. The 

Fig. 4 corresponds to results of the MOSA condition classifier 

when it was interested just in diagnosis the surge arrester as 

defective or not, i.e., when the network was trained and tested 

with database with labels type 1, as shown in Table I. In Fig. 5 

the results of classification system for the database with labels 

type 2 are shown. In this case, it was evaluated the ability of 

the classifier in the identify the type of failure on the surge 

arrester. 

As shown in Fig. 4, hit ratios approximately equal to 0.98 

(98%) and quantization errors less than 0.2 (20% of the 

biggest registered value) were obtained for neural grids greater 

than 15x15. In Fig. 5, similar results were obtained for neural 

grids greater than 16x16, i.e., it was obtained hit ratios 

approximately equal to 98% and quantization errors less than 

0.2. The necessity of increase the neural grid in second 

situation (database with labels type 2), it is due the increase in 

the problem complexity, since the network needs clustering 

and classifying not only the MOSA condition (defective or 

not), but the type of failure among those simulated in 

laboratory. Anyway, the increment in the network is practically 

irrelevant to retain the same ability of classification. It was 

concluded that due the uniform performance of the 

classification system, neural grids with 16x16 neurons yields 

accurate results on the estimation of the MOSA operation 

condition and on the identification of type of failure present in 

surge arrester. 

Finally, Fig. 6 shows the final state of a typical 15x15 SOM 

network after the training phase. As can be seen, the patterns 

in the database labeled type 1 (def or ok) were grouped into 

distinct regions of the map. Therefore, in future tests, to inform 

new patterns to the neural network, regions marked with labels 

def or ok are activated, depending of the characteristics of total 

leakage current signal of the evaluated surge arrester. So, it is 

possible to obtain a graphical, intuitive, and accurate result 

with this kind of classification system, performing the analysis 

only of the total leakage current of the surge arrester in steady-

state operation condition. 

 
Fig. 4  Evolution of the classifier comparative parameters in the condition 

identification. 

 
Fig. 5  Evolution of the classifier comparative parameters in the condition 

classification. 

 
Fig. 6  Operation condition classifier after the training phase. 

 



VIII.  CONCLUSIONS 

In this paper a new surge arrester monitoring and diagnosis 

technique was presented. The technique is based on analysis of 

only the total leakage current of the surge arresters when in 

steady-state operation condition. The techniques existent in the 

literature, usually require the measurement on site of the surge 

arrester applied voltage, with the purpose of estimate resistive 

component of the total leakage current. Measuring high 

voltage on site consist in a limiting for these techniques, 

because of the power utilities operational restrictions and 

inaccuracies on the procedures. 

With the proposed technique is not necessary measure or 

estimate the applied voltage on the surge arrester. It is 

sufficient to measure the total leakage current, to apply 

algorithms for feature extraction and classification, for 

determine the MOSA operation condition. 

For extract features of the total current, a methodology able 

of identify the harmonics components of the current was 

developed. The extracted features were used in the training 

and testing process of the surge arrester operation condition 

classifier. The classifier is based on utilization of a neural 

network called Self-Organizing Maps (SOM network), which 

is able to perform the automatic clustering of patterns (current 

signals) according the patterns level of similarity. 

High hit ratios were obtained (greater than 98%) with the 

proposed technique in the process of classification of the 

MOSA operation condition (defective or not) and in the 

identification of the MOSA defect (among those simulated in 

laboratory). So, it is concluded that is possible to perform the 

monitoring and diagnosis of ZnO surge arrester, with high 

accuracy, from the analysis only of the total leakage current. 
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