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Abstract — This paper investigates wave propagation and 

transients associated with intersheath modes on normal-bonded 
and cross-bonded underground cables. Circuits for exciting 
intersheath modes are analyzed based on simulation and 
propagation characteristics of a cable system. It is observed that 
if the source is grounded, several modal components will be 
overlapped. Also when a purely intersheath mode wave travels in 
a cross-bonded cable the reflections and refractions occurring at 
each crossbonding point produce additional modes of 
propagation. A homogeneous model for long cross-bonded cables 
allows the computation of modal characteristics of the system 
facilitating its analysis and it presents advantages in terms of 
simulation time. The accuracy of the homogeneous model and the 
advantage of its use is greater as the length of the system and the 
number of sheath grounding points increases. 
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I.  INTRODUCTION 

ecently, a number of high voltage cable projects have 
been proposed all over the world and some of them are 
currently under construction. This is mainly due to the 

installation of off-shore wind farms, the use of high voltage AC 
cables for grid development, and partially due to human safety 
requirements against electrostatic and electromagnetic hazards 
caused by overhead transmission lines [1]. For example, a 
400kV AC submarine cable connecting Italian mainland and 
Sicily Island is under construction [2]. The Boutre-Trans 
project of the French Transmission System Operator (Réseau 
de Transport d’Électricité) involves the installation of a 66 km 
long 225 kV AC cable in the south east of France. In Denmark, 
all the 132kV to 150kV overhead transmission lines are 
planned to be undergrounded by the year of 2040 [3]. 

There are many papers investigating wave propagation and 
transient characteristics of cables [1, 4-19]. Most of these 
papers are concerned with coaxial mode wave propagation 
and transients. Only few papers investigated wave propagation 
and transient characteristics due to the earth-return and 
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intersheath modes, i.e. propagation between metallic sheaths 
including earth [1, 12, 18]. 
References [1, 18] discussed the significance of a transient due 
to an intersheath mode based on a field measurement. The both 
ends of the metallic sheaths were open-circuited in the field 
test. Since in practice, all the sheaths are grounded at every 
major section, it is not clear if the measured result is applicable 
to the case of a real cable. 

This paper investigates wave propagation characteristics of 
intersheath modes and resultant transient voltages and currents 
on underground cables with normal-bonding and cross-
bonding. The circuits recommended for intersheath mode 
excitation in field tests are first analyzed and explained based 
on EMTP simulations and on the propagation characteristics 
of the system. The effect of grounding a source in a field test 
is also explained. A so-called homogeneous model for cross-
bonded cables is also explained and its accuracy is tested with 
simulation of electromagnetic transients (EMT) in EMTP.  

II.  THEORETICAL ANALYSIS OF INTERSHEATH MODES 

A. Intersheath modes 

Wave propagation on a multi-phase conductor is 
characterized by the modal propagation constant γ and the 
voltage and current transformation matrices A and B. In the 
case of a three-phase single core coaxial (SC) cable composed 
of a core conductor and a metallic sheath, the transformation 
matrices are given approximately in the following form in the 
high frequency region, i.e. for a transient analysis [14]. Bold 
characters are used to denote vectors and matrices hereinafter. 
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In (3), subscript ‘c’ is used for core-to-ground voltage and 
subscript ‘s’ is used for sheath-to-ground voltage. Subscripts 
‘a’, ‘b’, and ‘c’ identify each phase and numbers 0 to 5 identify 
the modes. It is observed in (1) to (3) that modes 0, 1 and 2 
depend only on sheath voltages Vsa, Vsb, and Vsc. It is also 
observed that V0=(Vsa+Vsb+Vsc)/3  is a 0-sequence (or earth-
return) voltage, whereas modes 1 and 2 are intersheath modes. 
From these observations and because this paper is focused on 
intersheath mode propagation, we can simplify equation (1) by 
eliminating core voltages: 

R
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Where Ve=[V0 V1 V2]
T and Vs=[Vsa Vsb Vsc]

T are sub-vectors of 
Vm and Vph, respectively. In a similar way for currents 
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where Ie=[I0 I1 I2]
T and Is=[Isa Isb Isc]

T. 

B. Circuits for intersheath modes 

Fig. 1 illustrates intersheath mode circuits corresponding to 
the transformation matrix in (2). Considering the circuit in 
Fig. 1(a), if we assume that the 3 phases are absolutely 
symmetrical (approximation validated in Chapter III.A), then 
the source will inject a current that will return half in each of 
the adjacent phases, that is  
 2, , 2sa sb scI I I I I I      (1) 

By combining (5) and (6), the modal currents become  
 0 1 20, 3 2, 0I I I I    (2) 

This result shows that only mode 1 (first intersheath mode) 
exists in the circuit of Fig. 1(a). 

In Fig. 1(b) the currents at the sending end are given by  
 , 0,sa sb scI I I I I     (3) 

By combining (5) and (8), the modal currents become 
 0 1 20, 0, 2I I I I     (4) 

The above equation clearly shows that only mode 2 (second 
intersheath mode) current exists in the circuit in Fig. 1(b). 

It is common in a field test to ground the source to avoid 
dangerous voltages in accessible terminals. When the voltage 
source in the circuits of Fig. 1 is grounded, the sum of the 
three-phase sheath currents is not zero and from (5) it is 
observed that I0 = Isa + Isb + Isc = Ig  ≠ 0. In such a case, an 
earth-return mode will be superposed to the intersheath modes 
observed in the circuits of Fig. 1. 

 
(a) Mode 1.                    (b) Mode 2. 

Fig. 1. Circuits for energization of modes 1 and 2 (intersheath modes) 
corresponding to the transformation matrix in (2). If the source is grounded, an 
earth-return mode is excited. 

C. Modal Attenuation and Velocity 

Fig. 2 illustrates the cross-section and the arrangement of a 
three-phase XLPE cable. Fig. 3 shows the modal attenuation 
and velocity of the system in Fig. 2. The earth-return mode 
(mode 0) is substantially different from the other modes for 
any frequency above 100 Hz. Attenuation of intersheath 
modes 1 and 2 and coaxial modes 3 to 5 is not very different. 
However, intersheath modes have propagation velocities 

substantially lower than coaxial modes, and thus it appears 
possible to observe the effect of the intersheath modes on 
transient voltages and currents from a difference of traveling 
time of the modal components [14]. Table I gives values of 
modal attenuation and velocity at 50 kHz which are used for 
analyzing simulation results in Chapter III. 

 
Fig. 2. Underground three-phase XLPE cable. 
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a) Modal attenuation. 

0

20

40

60

80

100

120

140

160

180

200

0.01 0.1 1 10 100 1000

ve
lo

ci
ty

 [
m

/μ
s]

frequency [kHz]

1

2

0

1

2
3

4
5

0

 
b) Modal velocity. 

Fig. 3. Modal frequency responses of the normal-bonded cable in Fig. 2. 
 

TABLE I. 
CABLE CONSTANTS AT F=50 KHZ – MODAL COMPONENTS 

Mode no. 0 1 2 3 4,5 

Attenuation [dB/km] 10.71 0.11 0.17 0.25 0.17 

Velocity [m/μs] 15.78 63.54 72.19 180.04 181.07 

III.  SIMULATED INTERSHEATH MODE WAVEFORMS  

This chapter presents simulation results of the circuits in 
Fig. 1 using the cable system in Fig. 2. A 1.2 μs/50 μs impulse 
voltage with the amplitude of 2 kV is applied at the sending 
end. The simulations are carried out in EMTP-RV [20] using a 
wideband cable model. The excitation of first and second 
intersheath modes is presented in Sections III.A and III.B. The 
effect of grounding the source in the circuit of Fig. 1(b) is 
analyzed in Section III.C.  



A. First intersheath mode 

Fig. 4 shows the phase-a receiving end sheath voltage in 
the circuit in Fig. 1(a). The oscillating period T is about 
126 μs. Since the cable is open-circuited, this corresponds to 
four times the traveling time τ along the cable. Thus, the 
propagation delay and the velocity are calculated as τ = T/4 = 
31.5 μs and c = 2000/31.5 = 63 m/μs. This velocity agrees 
with the first intersheath mode (mode 1) in Table I. Fig. 5, 
presenting modal voltages calculated form the simulated 
results at the receiving end of the circuit in Fig. 1(a), further 
confirms this observation by showing that mode-0 and mode-2 
voltages are nearly zero compared to mode-1 voltage. Thus, it 
is clear that only the first intersheath mode (mode 1) is 
generated in the circuit in Fig. 1(a). 
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Fig. 4. Simulated sheath-a receiving end voltage in the circuit of Fig. 1(a). 
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Fig. 5. Mode-0, mode-1, and mode-2 voltages calculated from simulation 
results of voltages at the receiving end of the circuit in Fig. 1(a).  

B. Second intersheath mode 

Fig. 6 shows the phase-a receiving end sheath voltage 
observed in the circuit of Fig. 1(b) using the cable design in 
Fig. 2. The oscillating period is T = 110 μs. The propagation 
delay and velocity are τ = T/4 = 27.5 μs and c = 2000/27.5 = 
72.7 m/μs, which agrees with the second intersheath mode 
(mode 2) in Table I. Fig. 7, presenting the voltages of modes 
0, 1, and 2 at the receiving end of the circuit in Fig. 1(b), 
further confirms that only the second intersheath mode is 
excited in the circuit of Fig. 1(b). 

C. Grounded voltage source 

In a field test, it is a usual practice to ground the source to 
avoid dangerous voltages at accessible terminals. This case is 
investigated in Fig. 8, showing EMTP simulation results of 
receiving end voltage of sheath-a when the source in Fig. 1(b) 
is grounded. Contrary to Fig. 6, for ungrounded source, the 
voltage in Fig. 7 shows that besides the main oscillating 
frequency there is another harmonic of lower frequency and 
some spikes are noticed at certain points. The modes at the 

receiving end of the circuit in Fig. 1(b) are plotted in Fig. 9. 
By comparing Figs. 7 and 9 it is observed that when the 
source in Fig. 1(b) is grounded mode-0, mode-1 and mode-2 
will be superimposed whereas when the source is isolated 
from the ground, only mode-2 is present. As expected, it is 
easy to observe in Fig. 9 that the mode-0 has the lowest 
velocity whereas mode-1 has a voltage slightly lower that 
mode-2, which agrees with the values in Table 1.  

Thus, it is concluded that it is difficult to measure only an 
intersheath mode in a field test with a source grounded. 
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Fig. 6. Simulated sheath-a receiving end voltage in the circuit of Fig. 1(b). 
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Fig. 7. Mode-0, mode-1, and mode-2 voltages calculated from simulation 
results of voltages at the receiving end of the circuit in Fig. 1(b). 
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Fig. 8. Simulated sheath-a receiving end voltage in the circuit of Fig. 1(b) with 
the source grounded. 
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Fig. 9. Mode-0, mode-1 and mode-2 voltages calculated from simulation 
results of voltages at the receiving end of the circuit in Fig. 1(b) with the 
source grounded. 



IV.  TRANSIENTS ON A CROSS-BONDED CABLE 

Crossbonding of metallic sheaths is a technique used in 
long high-voltage AC cables to reduce losses due to induced 
sheath currents and improve power transmission capacity. It 
consists of a regular transposition of the metallic sheaths, 
analogous to the transposition of phases in overhead power 
lines. A crossbonding point causes refraction/reflection of a 
travelling wave on the cable system resulting in higher sheath 
overvoltage [8, 10-13, 21]. An accurate transient simulation 
must therefore account for the crossbonding of sheaths. 

The most straightforward model for a crossbonded cable 
represents each minor section separately (discrete model). 
This gives an accurate time-domain solution and allows the 
inclusion of a lead wire impedance. On the other hand the 
simulation of long cables becomes tedious and time 
consuming. 

 If the impedance of the lead wire is neglected, the rotation 
of sheaths may be included in the per-unit-length parameters 
of the cable, allowing to represent a major section with 3 
cross-bonded segments using a single model. Though this is 
accurate in steady-state, it neglects the reflection/refraction 
phenomena observed during a transient.  

Cross-bonded cables usually have the sheaths short-
circuited and grounded at each major section to reduce sheath 
overvoltages, as shown in Fig. 10. In this case, the three-phase 
sheath may be considered as a single conductor thus reducing 
the total number of conductors from 6 to 4.  

The so-called homogeneous model of a cross-bonded cable 
with the sheaths grounded includes the effect of cross-bonding 
in the per-unit-length parameters and uses a single equivalent 
sheath [11, 22]. This model has a positive impact on the 
simulation time by reducing the number of cable sections by a 
factor of 3 and by reducing a 6th order system to a 4th order 
one. A 3rd order model is possible if we assume the voltage in 
the sheath is continuously zero. The homogeneous model also 
makes possible the computation of the propagation 
characteristics of cross-bonded systems [11, 22]. 

In Section A the theory for the homogeneous model is 
explained and the modes of propagation in a cross-bonded 
cable are computed. Transients in one and in two major 
sections are presented in sections B and C, respectively. 

 
Fig. 10. Major section of a cross-bonded cable system with sheaths grounded. 

A. Homogeneous model of a cross-bonded cable 

A cross-bonded cable which sheaths are grounded at each 

major section can be approximately represented by an 
equivalent homogeneous cable composed of three core 
conductors and one metallic sheath [11, 13, 14, 21]. The 
construction of a homogeneous model is explained as follows. 
Consider Z and Y the impedance and admittance matrices of a 
minor section of the cable 
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where subscript ‘cc’ is used for impedance/admittance 
matrices between cores, ‘ss’ for sheath impedance/admittance 
matrices and ‘cs’ for core-to-sheath impedance/admittance 
matrices. The first step in the construction of a homogeneous 
model is to account for the rotation of voltages and currents in 
metallic sheaths. This is done using a rotation matrix R as 
follows 
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Where U is an identity matrix and 0 is a null matrix, both 3-
by-3. Developing the products in (11) gives the following 
impedance sub-matrices 

 cc ccZ = Z                   (14) 

  / 3T cs cs 33 cs 33 csZ Z R + Z R + Z         (15) 
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For the core-sheath matrix Z’
cs, each element of a row is equal 

to the average of the same row of Zcs. This is easily seen from 
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For the self-sheath impedance, multiplication by R33 will 
rotate the rows and columns of Zss such that a diagonal 
element of Z’

ss becomes the average of the diagonal elements 
of Zss and an off-diagonal element of Z’

ss becomes the average 
of the off-diagonal elements of Zss 
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From the similarity between equations (11) and (12), it is clear 
that the admittance submatrices in (12) follow the reasoning 
explained above. 

There is no approximation in deriving the matrices Z’ and 
Y’ of a crossbonded cable except the assumption that all minor 
sections have the same length. Therefore the approach is exact 
in steady-states, i.e. in a frequency domain. The same cannot 



be directly applied to transients since the reflected/refracted 
waves originated at cross-bonding points are not represented 
in Z’ and Y’. 

The sheaths being short-circuited and grounded at each 
major section allows a further simplification of the problem as 
the three sheaths are reduced to a single conductor. This way, 
the impedance and admittance matrices become 4-by-4 
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Fig. 11 shows frequency responses of modal attenuations 
and propagation velocities calculated from the homogeneous 
model of a cross-bonded cable with the cross-section in Fig. 2. 
Comparing Figs. 11 and 3, with the propagation 
characteristics of a cross-bonded cable and a normal-bonded 
cable, respectively, it is observed that a cross-bonded cable 
has 4 propagation modes whereas a normal-bonded cable has 
6. There exists no difference for mode 0 (earth-return mode) 
between Fig. 3 and Fig. 11. Also, no significant differences 
are observed for the coaxial modes (modes 3 to 5 in Fig. 3 and 
mode 3 in Fig. 11), except that the normal-bonded cable has 3 
coaxial modes whereas the cross-bonded cable has only one. 
This is because, the cross-bonded cable having only one 
sheath, there is only one mode with return through the sheath 
in the same way as there is only one earth-return mode in any 
transmission system. It is also observed that modes 1 and 2 in 
a normal-bonded cable (intersheath modes) still exist in a 
cross-bonded cable but they have a different velocity in the 
cross-bonded cable. Actually, what is usually called 
intersheath mode is in fact an interphase mode and in a cross-
bonded cable this mode propagates between cores rather than 
between sheaths. 

B. Simulation of one major section (x=6 km) 

Consider a major section having a total length of 6 km divided 
into 3 equal minor sections and having the cross-section of 
Fig. 2. At both ends of the major section, the three-phase 
sheaths are short-circuited with a grounding resistance Rg = 
10 Ω. A 1.2 μs/50 μs voltage impulse with 2 kV is applied to 
core-a. 

Fig. 12 shows EMTP simulation results for the core-a 
receiving end voltage using a discrete cable model (each 
minor section modeled separately) and a homogeneous model. 
It is observed that the voltage waveform of the homogeneous 
model is much smoother and the maximum overvoltage is 
higher than in the discrete model. It is also noted that 
travelling waves initially arrive at the same time for the two 
models, but as time goes by, the moments of arrival of a wave 
are no longer simultaneous. This is because in the first 
moments of simulation there is still no wave reflected from a 

cross-bonding point arriving at the receiving end. When this 
happens, the two voltage waveforms start to diverge more 
because the discontinuity caused by cross-bonded points is not 
represented in the homogeneous model. 

C. Simulation of two major sections (x=12 km) 

Consider two major sections having a total length of 12 km, 
divided into 6 equal minor sections with the cross-section as 
in Fig. 2. At both ends of each major section, the three-phase 
sheaths are short-circuited with a grounding resistance Rg = 
10 Ω. A 1.2 μs/50 μs voltage impulse with 2 kV is applied to 
core-a. 

Fig. 13 shows EMTP simulation results for the core-a 
receiving end voltage using a discrete cable model (each minor 
section modeled separately) and a homogeneous model. By 
comparison of Figs. 12 and 13 it is observed that the two 
models agree more as the length of the system and the number 
of grounding points increase. This is because 
reflected/refracted waves are attenuated when passing through 
a grounding point and when travelling a longer distance in the 
cable. Therefore, the difference becomes less important 
between a discrete model and a homogeneous model which 
does not represent these reflected/refracted waves. 

V.  CONCLUSION 

This paper presents a study of intersheath modes in 3-phase 
single-core coaxial cables. Circuits for intersheath mode 
energization are explained and investigated based on EMTP 
simulations and on the propagation characteristics of the 
cable. It is observed that when a source is grounded (approach 
used often in field tests to avoid dangerous overvoltages) 
various modal components (voltages and currents) are 
produced and it becomes difficult to observe the intersheath 
modes. A so-called homogeneous model for long cross-bonded 
cables is explained and its performance is demonstrated with 
transient simulations in EMTP. A homogeneous model 
accounts for the transposition of sheaths at cross-bonding 
points and for the grounding of sheaths at major sections. The 
homogeneous model has benefits in terms of simulation time: 
(1) a major section cable modeled as a whole instead of having 
a separate model for each minor section, reducing the number 
of cable models in a simulation by a factor of 3; (2) the 
grounded sheaths can be considered as a single conductor 
instead of three. Therefore, the homogeneous model has order 
4 instead of 6 (4 conductors, 4-by-4 per-unit-length matrices). 
This further reduces to 2/3 the number of equations to solve in 
the simulation of each cross-bonded cable. The homogeneous 
model has another advantage of allowing the computation of 
propagation characteristics of a cross-bonded cable. The 
homogeneous model is highly accurate in steady-state, i.e. in 
frequency domain, but it is less accurate for simulating 
transients as it does not represent the reflected/refracted waves 
produced at cross-bonding points. Nevertheless, simulations 
show that as the length and the number of sheath groundings 
increase, the accuracy of the homogeneous model is improved 



with results approaching those of a discrete cable model. 
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Fig. 11. Modal propagation on the homogeneous model of a cross-bonded 
cable corresponding to Figs. 10 and 2. 
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Fig. 12. Core-a receiving end voltage in a cross-bonded cable having a single 
major section. Results computed using a discrete and a homogeneous cable 
model. 
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Fig. 13. Core-a receiving end voltage in a cross-bonded cable having 2 major 
sections. Results computed using a discrete and a homogeneous cable model. 
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