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Abstract—System identification methods have been widely 

used for the study of low frequency electromechanical oscillations 

and the development of low order dynamic models. This paper 

introduces vector fitting (VF) to estimate the eigenvalues of power 

systems based on their dynamic responses. Practical issues and 

solutions encountered in the application of VF are discussed. The 

performance of VF is evaluated in different power system models 

and is found very accurate in all cases. 
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I.  INTRODUCTION 

YNAMIC or small-signal stability studies are of crucial 

importance for the planning, control and safe operation of 

power systems. In order to analyze power system dynamics, 

linear analysis or system identification techniques are used [1]. 

Linear analysis is a standard tool in most simulation 

platforms, which requires the determination of a detailed 

model to be analyzed using eigenanalysis and control methods. 

On the other hand, system identification techniques are 

advanced mathematical tools that directly reflect the dominant 

dynamic characteristics of a system using data sets, comprising 

either offline simulated data or online measurements. System 

identification consists of three main steps: a) the design of an 

experiment, b) the implementation of a system model, and c) 

the estimation of the model parameters from measurements. 

Significant applications of the system identification 

approach include: a) tuning, design and testing of control 

systems, b) control signal analysis, c) model validation to 

verify and improve the accuracy of linear models as well as of 

the used data for parameters, and d) incorporation of robust 

control design techniques [2]. Moreover, system identification 

also deals with the development of low order equivalent 

models for the analysis of the dynamic performance of power 

systems, following either the black- or the grey-box approach. 

Dynamic equivalencing is an approach to overcome the 
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difficulties of detailed modeling, especially in complex 

distribution networks, due to the efficient computational 

performance and the ability to model different types of energy 

sources and loads. 

Several system identification techniques have been 

proposed in the literature. The majority of them are based on 

the direct identification of the model parameters from time-

domain (TD) responses, including the Prony method [3], the 

numerical algorithm for sub-space state space system 

identification (N4SID) [4], and the prediction error method 

(PEM) [5]. However, system modes were originally estimated 

in frequency-domain (FD) from the spectrum of a dynamic 

response, by applying the fast Fourier transform (FFT) [6], 

combined also with the sliding window technique for the 

damping factor estimation. In 1999, a powerful and very 

accurate method for system identification in the frequency 

domain was proposed, known as vector fitting (VF) [7]. The 

basic concept of VF is that it utilizes rational approximations 

in order to estimate the zeros and poles of a FD function. Since 

then, VF has been widely applied to a number of power system 

problems, including the modeling of transmission lines, power 

transformers, high-speed interconnects, etc. The significant 

advantage of VF is that it provides very accurate fitting with 

guaranteed stable poles, which can be also applied to 

multiterminal systems [8]. 

In this paper, the VF technique is adopted for the first time 

to identify the oscillatory modes contained in dynamic 

responses of power systems, when the system is subjected to 

small disturbances. The procedure is implemented in two 

steps: 1) the dynamic responses are initially transformed from 

TD to FD, and 2) the VF approach is then applied to estimate 

the poles and residues of the power system dominant modes 

with significant accuracy. 

Initial results of the application of the VF to different power 

system configurations are presented, including conventional 

transmission systems, networks with distributed generation and 

microgrids (MG) operating in grid-connected or islanded 

mode. Moreover, the performance of the VF is evaluated 

under real-world conditions using field measurements. The 

accuracy of the VF is compared to other identification 

techniques, including Prony method, N4SID and PEM. Results 

verify the practical value of VF for power system mode 

estimation and dynamic equivalencing. 
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II.  BACKGROUND 

A.  System basics 

The state-space representation of a linear, time-invariant 

system in continuous-time form is [1]: 

 , c cx x uA B  (1) 

 , c cy x uC D  (2) 

where x  is the state matrix of the system,
 

x  denotes the 

derivate of x  against time, u  and y  are the input and output 

variables, respectively. System matrices ,  ,  c c cA B C

 

and 
cD  

contain the unknown system parameters. The homogeneous 

response of a state
ix  is [1]: 
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where 
i , 

i  , 2i if   and 
i  are the amplitude, angle, 

angular frequency and damping factor, respectively.  

In discrete form (1) is rewritten as: 

 
1 ,  k k kx x uA B  (4a) 

 , k k ky x uC D  (4b) 

where all matrices are defined at the discrete time instant k. 

Since system matrices are determined, the eigenvalues 

i i ij     of A or alternatively the poles of the system 

transfer function ( )H s , defined in (5), can be determined. For 

the identification of ( )H s

 

apart from pole estimation, the 

corresponding residues are also required. 
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where p  is the pole of the transfer function related to 

eigenvalue 
i  of A and K  is the corresponding residue. 

B.  Vector fitting 

VF approximates a FD response with a rational function 

defined as the sum of 2N partial fractions, as shown in (6). 
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where terms d

 

and h

 

are optional and mainly defined by the 

asymptotic behavior of the FD response. VF iteratively solves 

(6) in a least-squares (LS) sense as a two-stage linear problem. 

In the first stage, known as pole relocation, an initial set of 

poles is used to estimate iteratively the poles of (6). The 

improved final poles are introduced in the second stage, named 

as residue identification to calculate the corresponding residue 

values [1], [8].  

Therefore, from (3), (5) and (6) it is evident that VF can be 

directly applied to a power system dynamic response 

(ringdown) to identify the mode parameters using (7). 
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The methodology followed in this paper to identify the 

dominant modes contained in a ringdown is summarized as 

follows: 

 Transform the TD data of a ringdown to FD using the 

Fast Fourier Transform (FFT). 

 The FD response is fitted using VF assuming relative 

error tolerance of -40 dB and a number of poles 

varying from 2 to 10. 

 Identify the poles and residues of the resulting 

rational function. Possible artificial poles that surplus 

dominant modes can be easily detected and removed, 

since they are characterized by significantly low 

amplitude or high angular frequency / damping factor 

and/or. 

 Determine the parameters of the dominant modes 

contained in the response using (7).  

The identified mode parameters are then used to simulate 

the ringdown response by means of (3). 

C.  Model validation 

The accuracy of the simulated responses obtained by VF is 

verified by computing the coefficient of determination 2R  and 

the deviation function  dev k , defined in (8) and (9), 

respectively, for each case.  
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      ˆ , dev k y k y k          (9) 

where y  is the mean value of the original response y  and ŷ  

is the simulated response by VF and M is the total number of 

signal samples. The coefficient of determination is the 

percentage value that shows how well the simulated. The 

larger the 2R  is, the more accurate the fit of the simulated to 

the original response is, thus a 100 % value corresponds to a 

perfect match, while a 0 % indicates that the simulated 

response is a constant  ˆ y y  [14], [15]. The identified mode 

parameters are evaluated using the relative prediction error (% 

PE): 
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where mp can any mode parameter. 

III.  POWER SYSTEMS UNDER STUDY 

The real power dynamic responses of five test power 

systems (TPS) are investigated with dominant modes 

presented in Tables I and II. In Table I the mode damping 

factor and angular frequency are listed for each TPS, while in 

Table II the corresponding amplitude and angle are 

summarized. In TPS1, inter-area oscillations of a transmission 

system are simulated using the benchmark response provided 



in [9]. In TPS2, a medium-voltage (MV) MG in grid-

connected mode is considered, including two synchronous 

generators, two inverter-interfaced DG units and a static load. 

TPS3 and TPS4 correspond to a low-voltage (LV) 

laboratory-scale MG. The MG can operate both in grid-

connected and islanded mode, and consists of the following 

distributed generation (DG) units: a) 2 kVA synchronous 

generator, b) 10 kVA inverter, c) 5 kW/3.75 kVAr static load 

bank, and d) 2.2 kW, 0.87 lagging asynchronous machine. All 

DG units follow an f-P, V-Q droop control scheme. In islanded 

mode an additional synchronous generator is also connected to 

the MG in order to provide voltage and frequency support. 

The dominant modes of TPS2 - TPS4 have been identified by 

applying Prony method on the recorded responses. Further 

details on TPS2 - TPS4 and on the identification procedure are 

provided in [10], [11]. TPS5 is the IEEE-39 bus system, also 

known as New-England Power System, consisting of 39 buses 

and 10 generators [12]. A ringdown response at bus-16 is 

recorded, applying a 30% load increase at bus-21. Originally, 

the dominant modes contained in the ringdown are identified 

by applying offline PEM to simulated responses. 

 
TABLE I 

DOMINANT MODES OF THE TEST SYSTEMS 

Test 

Power 

System 

Mode #1 Mode #2 Mode #3 

σ1 

(1/s) 

f1 

(Hz) 

σ2 

(1/s) 

f2 

(Hz) 

σ3 

(1/s) 

f3 

(Hz) 

TPS1 -0.11 0.25 -0.16 0.39 - - 

TPS2 -4.17 4.29 -11.8 7.73 - - 

TPS3 -2.60 3.31 - - - - 

TPS4 -0.89 0.21 -39.0 2.78 - - 

TPS5 -0.17 0.23 -0.81 0.63 -1.82 1.03 

 
TABLE II 

MODE AMPLITUDE AND ANGLE OF THE TEST SYSTEMS 

Test 

Power System 

Mode #1 Mode #2 Mode #3 

A1 

(pu) 

φ1 

 (rad) 

A2 

(pu) 

φ2 

(rad) 

A3 

(pu) 

φ3 

(rad) 

TPS1 2.00 1.5π 2.0 0.5π - - 

TPS2 2.09 0.35π 1.5 -1.26π - - 

TPS3 1.00 1.5π - - - - 

TPS4 2.59 -0.55π 10.0 -0.59π - - 

TPS5 1.00 -0.8π 1.32 -0.6π 1.13 0.09π 

 

IV.  NUMERICAL RESULTS 

A.  Regular vs odd sampling 

The application of VF for mode identification is evaluated 

for TPS1 using MATLAB implementation. The examined 

dynamic response is described by (11) and simulates a 

ringdown obtained by a phasor measurement unit (PMU). The 

testing data are generated at sampling rate of 

1 1000sT  samples per second (sps), assuming total 

observation time Τ equal to 30 s and 60 s. 
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The spectrum of the dynamic responses is calculated using 

both regular and odd sampling schemes in FD [13], defined in 

(12) and (13), respectively.  
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where 

   n sf f n T  (14) 

and 
wN  is the total number of the generated samples. Both 

sampling schemes assume equally spaced samples. However, 

in the regular sampling case the frequency spacing is equal to 

 , while in the odd sampling is 2 , where    . 

The two sampling methods are compared for different 

observation times in Figs. 1 and 2, where the spectrum 

magnitude and angle are plotted, respectively.  

The two peaks in Fig. 1 are directly associated with the 

frequencies of the two ringdown modes. As depicted in Fig. 1 

the corresponding frequencies of the two peaks for both 

sampling schemes are closer to the original values when T is 

60 s rather than 30 s, due to the higher frequency 

discretization. Small differences in the spectrum magnitude 

and angle between the two methods are mainly noticed in the 

frequency range close to the spectrum peaks.  

The spectrum of the ringdown calculated with regular and 

odd sampling is fitted with VF. In all cases the resulting model 

order corresponds to two pairs of conjugate poles, neglecting 

any surplus modes as previously analyzed. In Fig. 3 and Fig. 4 

the magnitude and angle deviation between the fitted and the 

original spectrum is illustrated, respectively. It can be seen that 

negligible differences are observed in the case of the regular 

sampled spectrum, while significant deviations occur in the 

case of odd sampling, especially for 30T  s. 
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Fig. 1.  Spectrum magnitude comparison with regular and odd sampling. 
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Fig. 2.  Spectrum angle comparison with regular and odd sampling. 
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Fig. 3.  Magnitude deviation between fitted and original spectrum. 
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Fig. 4.  Angle deviation between fitted and original spectrum. 

 

The resulting TD responses are compared to the original 

response of Fig. 5 by plotting in Fig. 6 the corresponding 

deviation curves. In the case of regular sampling the 

simulation error is very low for both observation times, where 

 dev k  is lower than 1E-3 and R
2
 is in average 99.96 %. On 

the contrary, the simulated response using odd sampling 

presents significant errors, especially for the case of 30T  s, 

since a considerable phase shift in the TD response is 

introduced. This is mainly attributed to the fact that for a given 

observation time and number of samples the frequency range 

of the odd sampling is double compared to regular. This 

results in low frequency resolution in the low-frequency range 

where the frequencies of the contained oscillatory modes are 

located.  

From the above analysis it is observed that the efficiency of 

VF with regular sampling is significantly high and superior to 

odd sampling in all examined cases. More specifically, the 

% PE of the identified mode parameters to the original values 

are presented in Table III for the case of 30T  s, assuming 

FD regular sampling. The efficiency of the proposed 

procedure for mode identification is verified, since the 

estimates of all mode parameters are consistent.  

The accuracy of the proposed methodology is also 

evaluated for all other TPSs. In Table IV the R
2
 of the 

simulated ringdown responses is presented, assuming TD 

sampling rate 1000 sps and FD regular sampling. It can be 

noticed that significantly high R
2
 values are obtained, 

exceeding 99 % in all cases. Note that the observation time of 

each ringdown is also presented in Table IV. 
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Fig. 5.  Original ringdown response. 

 
TABLE III 

% PE OF THE IDENTIFIED MODAL PARAMETERS 

Mode 

Parameter 
Mode #1 Mode #2 

σ 0.7260 0.5625 

ω 0.0507 0.0548 

Α 0.3100 0.3710 

φ 0.3947 0.9040 

 

TABLE IV 

COEFFICIENT OF DETERMINATION FOR DIFFERENT TEST POWER SYSTEMS 

Test System R2 
Observation 

time (s) 

TPS1 99.9204 30 

TPS2 99.9778 2 

TPS3 99.9933 2 

TPS4 99.7817 3 

TPS5 99.9958 30 
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Fig. 6.  Comparison of TD responses with deviation curves. 

 

B.  Effect of sampling rate 

In this section the influence of the sampling rate on mode 

estimation is investigated. VF is applied to identify the modes 

of all TPSs with different sampling rates. The R
2
 curve of the 

simulated dynamic responses is plotted against sps in Fig. 7. 

Note that x axis is in logarithmic scale. In general, significant 

increase of R
2
 is observed with the sampling rate. Specifically, 

R
2
 is close to 97 % for sps equal to 100, while further increase 

of the sps improves slightly the simulated responses.  

Specifically, in Fig. 8 the % PE curve of the identified 

mode parameters for TPS 5 is plotted. Note that both axes are 

in logarithmic scale. It can also be observed that the % PE 

decreases with increasing sampling rate for both damping 

factors and angular frequency of the three modes. The % PE of 

all mode parameters is lower than 0.02 % for sampling rates 

higher than 100. Furthermore, the lower frequency modes are 

estimated more accurately than the higher frequency modes. 

The same investigation is also applied to the rest TPSs and the 

results are summarized in Table V for sps 1000. Note that the 

% PE of all mode parameters is significantly low, with the 

exception of mode # 2 in TPS4, where the damping factor is 

very high. 

Moreover, the performance of VF considering the 

computational burden is investigated in an Intel Core i7, 

2.67 GHz, RAM 6 GB personal computer. The processing 

time in seconds is presented in Table VI for all examined TPSs 

and for different sampling rates taking values from 10 sps to 

10000 sps. It is evident that VF can extract the dominant 

modes very fast even in cases of high sampling rates up to 

1000 sps, allowing the online application of the procedure. 

Note that computational time of the order of seconds is only 

noticed in cases of large PMU data streams and excessive 

sampling rates, i.e. for 10000 sps. 
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Fig. 7.  Effect of sps for different TPS configurations. 
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Fig. 8.  Mode parameter % PE for TPS5. 

 

TABLE V 

% PE IN MODE ESTIMATION FOR 1000 SPS 

Test 

System 

Mode #1 Mode #2 Mode #3 

σ1 f1 σ2 f2 σ3 f3 

TPS1 0.0464 0.0047 0.0578 0.0044 - - 

TPS2 0.0080 0.0024 0.0371 0.0145 - - 

TPS3 0.0005 0.0002 - - - - 

TPS4 0.1080 0.0333 2.7050 9.7051 - - 

TPS5 0.0001 0.0001 0.0011 0.0003 0.0004 0.0014 

 
TABLE VI 

COMPUTATIONAL BURDEN IN SECONDS 

Test 

System 

sps 

10 50 100 500 1000 10000 

TPS1 0.0256 0.0548 0.0940 0.4321 0.7761 8.504 

TPS2 0.0182 0.0218 0.0260 0.0623 0.1082 0.912 

TPS3 0.0126 0.0141 0.0159 0.0279 0.1564 0.343 

TPS4 0.0215 0.0311 0.0439 0.1564 0.3305 3.169 

TPS5 0.0377 0.1071 0.1946 0.8154 1.623 17.89 

 

C.  Identification of frequency close modes 

In this test the performance of VF is evaluated in case 

frequency close modes are contained in the ringdown. 

Considering the ringdown response of TPS5, the mode #3 is 

manually replaced by a mode at 0.66 Hz with damping factor 



equal to the original. The resulting ringdown contains two 

close modes at 0.63 Hz and 0.66 Hz, i.e. modes #2 and #3. 

The TD response is generated using 1000 sps, while the FD is 

regularly sampled. The spectrum of the generated dynamic 

response is fitted with VF, as shown in Fig. 9 and Fig. 10. The 

spectrum contains only two peaks instead of the expected 

three, since close modes #2 and #3 cannot be resolved with 

conventional Fourier techniques. However, VF preserves its 

high precision and identifies all three modes as analyzed in 

Table VII. This feature of VF to identify frequency close 

modes is an advantage compared to other FD system 

identification techniques. In Fig. 11 the simulated TD system 

response is plotted and compared to the original, presenting in 

average trivial deviation. Note that the maximum deviation is 

5.6E-3. Also note that the dynamic responses axis is depicted 

on the left of the graph, while the deviation curve refers to the 

right one. 
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Fig. 9.  Spectrum magnitude fitting of the modified TPS5 with close modes. 
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Fig. 10.  Spectrum angle fitting of the modified TPS5 with close modes. 

 

 

 

 

 

 

 

TABLE VII 

% PE OF THE IDENTIFIED MODAL PARAMETERS 

Parameter Mode #1 Mode #2 Mode #3 

σ 1.26E-4 4.1E-3 1.2E-3 

ω 3.3E-5 1.2E-3 9.9E-3 

Α 3.7E-1 1.3E-2 1.9E-2 

φ 2.0E-1 1.1E-2 6.4E-2 
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Fig. 11.  Comparison of the original and the fitted TD response. 

 

V.  APPLICATION TO FIELD MEASUREMENTS 

VF is applied to the real measurement dataset obtained 

from TPS3 for mode identification. In this analysis the MG is 

interconnected to a weak distribution system. The MG real and 

reactive power responses at the point of common coupling 

(PCC) are recorded with a sample rate of 500 sps. The 

disturbances are caused by rapid changes in the operational 

state of the static load [10]. 

Since measurement data are distorted by noise, 

preprocessing is performed prior to parameter estimation to 

focus on the low-frequency modes and improve the quality of 

the measured data. The discretized real and reactive power 

responses are passed through 100-order finite impulse 

response (FIR) zero-phase low pass filters (LPF)  with cut-off 

frequency at 3 Hz and 50 Hz, respectively [5], [14], [16]. The 

processing of the recorded responses is implemented in 

MATLAB using the available Digital Signal Processing (DSP) 

toolbox [15]. 

By applying VF the single mode contained in the real 

power response referred in Section III is identified. 

Additionally, the reactive power is described by two modes. In 

Figs. 12 and 13 the TD simulated real and reactive power 

responses, respectively, are compared to the corresponding 

measurements. Both real and reactive power deviation curves 

indicate the high accuracy of the fitted responses. Note that 

deviation curves are calculated assuming in y(k) of (9) the 

measurement responses after filtering. 
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Fig. 12.  Comparison of the original and the fitted TD real power response. 
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Fig. 13.  Comparison of the original and the fitted TD reactive power 

response. 
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Fig. 14.  % PE in mode parameter estimation. Subplots: a) mode #1 real 

power, b) mode #1 reactive power and c) mode #2 reactive power. 

 

The performance of VF is assessed and compared with 

Prony, N4SID and PEM techniques in Fig. 14, where the bar 

diagrams illustrate the % PE of the identified modes for each 

case. It can be seen that the performance of VF is comparable 

to PEM in terms of accuracy for both the damping factor and 

the angular frequency. The % PE is lower than 10 % for all 

mode parameters for the two methods. Considering N4SID, it 

has the worst performance and the highest % PE in the 

damping estimate of the modes #1 and #2 of the reactive 

power with 8.99 % and 48.1 % error, respectively. Prony 

method generally provides accurate results in terms of 

parameter mode estimation. However, the resulting damping 

factor of mode #2 of the reactive power presents a 28.7 % 

error. 

VI.  CONCLUSIONS 

In this paper VF has been employed for transfer function 

identification and mode estimation of power systems, based on 

recorded dynamic responses. A parameter estimation 

procedure is proposed and the influence of different model 

parameters is investigated. The main remarks indicate that: 

 VF can very accurately approximate the FD response 

of ringdowns in power systems, and thus identify the 

corresponding mode parameters with high accuracy. 

 For the calculation of the ringdown spectrum, regular 

sampling is preferred over the odd sampling method. 

 The application of up-sampling in TD can improve 

significantly mode estimation with VF. 

 A significant feature of VF is its capability to 

accurately identify closely spaced modes.  

 VF can be efficiently applied both to offline 

simulated responses and also to measured data, 

distorted by high-frequency noise or harmonics. For 

the latter case the application of LPFs improves 

significantly mode estimation. 

 Comparing VF with other well-known system 

identification techniques it is concluded that the 

performance of VF is high and comparable to PEM in 

terms of accuracy for both damping and frequency 

estimates.  

 VF can be efficiently applied for real-time dynamic 

response monitoring. 
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