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Abstract--Although PI-equivalent transmission line modeling is 

simple in use and offers various advantages, its main drawback is 

the emergence of artificial numerical oscillations in transient 

responses caused by the parameter lumpiness. In this paper, two 

different low-pass filters are proposed to damp out the artificial 

numerical oscillations. The presented post-processing 

methodology is first demonstrated on a single-phase overhead line 

and its performance is compared to the corresponding of a 

traditional method with the inclusion of damping resistances. 

Results show the successful alleviation of the related oscillations, 

whereas the proposed formulation is further generalized to 

multiconductor overhead transmission lines without considerable 

loss of accuracy. 
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I.  INTRODUCTION 

HE development of time-domain (TD) simulation models 

for the accurate calculation of electromagnetic transients 

in transmission lines has been considerably increased again in 

recent years. Despite the progress that has been made in the 

optimization of fully frequency-dependent TD models and 

their extensive use, there are still open issues regarding their 

accuracy and numerical stability [1]-[3]. In such cases, as well 

as when the need for numerical efficiency outweighs the 

importance of high accuracy, more simplified approaches can 

be considered, such as frequency-dependent models with 

constant modal transformation matrices [4] or constant-

parameter models [5]. 

Among these models, the lumped-parameter PI-equivalent 

approach can be selected, which is simple in use and offers 

various advantages over other methods [6]. Specifically, the 

calculation routine of the PI-equivalent model is explicitly 

expressed in phase-domain, avoiding the transformation to 
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modal-domain and the resulting approximations to propagation 

characteristics and modal transformation matrices [7]. 

Therefore, the PI-equivalent approach yields accurate enough 

results in both overhead lines and underground cables, 

examining not only steady-state conditions but also transient 

phenomena with the per-unit-length (pul) parameters 

calculated at the dominant resonance frequency of the 

examined configuration [8]-[10]. 

However, in order to take into account the distributed 

nature of the transmission line, a large number of PI-

equivalents must be considered in cascade connection. This 

often leads to artificial numerical oscillations, which are 

caused by the application of several lumped elements 

associated to the commonly-used trapezoidal integration. As a 

consequence, the PI-equivalent model results in transient 

responses and voltage profiles along transmission lines which 

are heavily distorted by the spurious oscillations, and thus 

often inaccurate [11]. 

Several solutions have been proposed in the literature to 

alleviate the problem of the lumped-element cascade 

connection. The most simplified approach is the introduction 

of damping resistances parallel to the series R-L branches of 

the PI-equivalents [12]. This method is quite effective but also 

introduces steady-state and transient response errors, due to 

the modification of the examined configuration resulting by 

the additional resistive elements. Other more sophisticated 

solutions interfere with the state-space expression of the PI-

equivalent model, resulting in the damping of the numerical 

oscillations but with the simultaneous emergence of numerical 

instabilities for the whole calculation procedure [11], [13]. 

In this paper, a post-processing method is proposed to 

tackle the numerical oscillations caused by the lumped-

parameter modeling of transmission lines. Specifically, the 

transient responses are subject to user-defined low-pass filters 

(LPFs) in order to remove the resonance frequencies of the 

artificial oscillations. The ripple and the order of the filters are 

selected in such a way that simulation accuracy is not 

significantly degraded, while the cutoff frequency is calculated 

by an empirical rule, taking into account the length and the 

resonance frequency of the examined transmission line. 

The performance of both infinite and finite impulse 

response (IIR and FIR) filters are examined in overhead line 

configurations. Transient responses and voltage profiles along 

transmission lines are compared to the corresponding obtained 

by the damping method with variable parallel resistances, as 

well as by other TD and frequency-domain (FD) models. 

Results verify the performance of the proposed method in 

T 



damping out oscillations related to lumped-parameter 

modeling without considerable loss of accuracy. 

II.  PROBLEM FORMULATION 

A.  Artificial Numerical Oscillations 

Despite the assumption of frequency-independent pul 

parameters, the PI-equivalent approach is often preferred over 

other models in power engineering studies, due to its modeling 

simplicity and highly accurate phase-domain calculation 

routine. However, in order to accurately represent the 

distributed nature of power lines, the PI-equivalent method 

requires the cascade connection of a large number of lumped 

segments, resulting in spurious oscillations of the 

corresponding TD transient responses. 

This is demonstrated in the energization test case of the 

100-km single-phase overhead line of Fig. 1, where a 1 pu, 50 

Hz sinusoidal voltage source is applied to the sending end (S). 

In Fig. 2, the switching transient response at the receiving end 

(R) is shown, assuming the homogeneous earth formulation of 

[14] with earth resistivity equal to 100 Ω∙m. The open-ended 

response using 100 cascaded PI-equivalents is compared to the 

corresponding obtained from the frequency-independent TD 

travelling wave model of Bergeron [5] and the FD model of 

Numerical Laplace Transform (NLT) [15], the latter of which 

is considered as reference. Results follow the same trend, 

although significant oscillations are evident on the transient 

response of the PI method.  
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Fig. 1.  Cross-section of the single-phase overhead line. 
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Fig. 2.  Transient response at the end R. 

The same problem is also observed in Fig. 3, illustrating the 

peak voltage profile along the line for the energization case. 

The higher voltage levels using the cascaded PI-equivalents 

are mainly caused by the artificial numerical oscillations, 

which can generally lead to overestimated results in insulation 

coordination and surge protection studies [16]. 
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Fig. 3.  Peak voltage profile along line length. 

B.  Sensitivity Analysis 

In Figs. 4 and 5 a sensitivity analysis of the emerging 

numerical oscillations is carried out, by varying the number of 

cascaded PI-equivalents and the simulation time step, 

respectively. Results show that the spatial resolution 

significantly affects the transient response and the resulting 

oscillations, whereas the change of time integral has almost no 

effect. 
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Fig. 4.  Numerical oscillations for different number of PI-equivalents. 
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Fig. 5.  Numerical oscillations for different time interval. 

III.  TRADITIONAL METHOD 

To date, the introduction of damping resistances parallel to 

the series R-L branches of the PI-equivalents is the simplest 

method to alleviate the spurious oscillations caused by the 

lumpiness. The insertion of the damping resistance Rd on the 

i-th PI-equivalent is presented in Fig. 6. The Rd value is given 

by (1), where L is the inductance of the i-th PI equivalent, Δt is 

the simulation time interval, and k is an adjustable factor 

typically varying between 2 and 10 [12]. 
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Fig. 6.  Damping resistance Rd connected to the i-th PI-equivalent. 
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In Fig. 7 the open-ended response of Fig. 2 is recalculated 

with the inclusion of the damping resistances, assuming 

different values of parameter k. Results show that this method 

is quite efficient for small values of k, since the spurious 

oscillations are almost fully alleviated. However, such values 

of k may also introduce steady-state and transient response 

errors, due to the possible modification of the examined 

configuration resulting by the additional resistive elements. As 

a result, a tradeoff between the simulation accuracy and the 

damping of oscillations should be considered, with a value of 

6k  generally providing acceptable results in most cases. 
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Fig. 7.  Numerical oscillations for different values of damping resistance. 

IV.  PROPOSED METHODOLOGY 

A.  Flowchart 

The proposed methodology for damping out the numerical 

oscillations associated with the lumped-parameter PI-

equivalent model is summarized in the following steps: 

 

Step 1: Calculation of the first order resonance frequency 

(fres), dominating the corresponding transient response. 

 

Step 2: Derivation of the upper frequency limit (flim), above 

which the spectrum content of the transient response can be 

neglected without introducing significant calculation error. 

 

Step 3: Selection of the spatial and time intervals (Δx, Δt), and 

simulation of the transient response using the cascaded PI-

equivalent model. 

 

Step 4: Application of the user-defined LPFs to damp out the 

spurious oscillations and extraction of the distortionless TD 

transient responses. 

B.  Calculation of First Order Resonance Frequency 

The derivation of fres can be performed using the iterative 

method of [17] in a fast and highly accurate way. The 

resonance frequency of any order and propagation mode can 

be calculated for both overhead and underground 

configurations, taking also into account possible transposition 

or cross-bonding schemes as well as any homogeneous or 

stratified earth formulation. 

However, in order to simplify the proposed procedure, fres is 

approximately calculated by the simplified expression of (2), 

where the asymptotic velocity asympt  is defined by (3) and 

depends on the examined configuration as follows [16]: 

 

 For overhead configurations, (3) is assumed to be equal to 

the air propagation constant by setting 
0   and 

0  , 

where 0 , 0  are the permittivity and permeability of air, 



respectively. 

 For overhead and underground cable configurations, (3) is 

assumed equal to the propagation velocity through the 

inner insulation medium by setting 
ins   and 

ins  , 

where 
ins , 

ins  are the permittivity and permeability of 

the inner insulation layer, respectively. 
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C.  Calculation of Upper Frequency Limit 

Although transient responses generally contain a wide range 

of frequencies, an upper frequency limit flim can be empirically 

determined, above which the spectrum content does not 

significantly contribute to the resulting TD response. This limit 

is equal to multiple times the first order resonance frequency 

and can be practically defined as the frequency at which the 

normalized spectrum magnitude is equal to 3 % of the 

corresponding magnitude at fres. 

In Table I the upper frequency limit is presented for the 

overhead line of Fig. 1, assuming both the open- and short-

circuit cases as well as line lengths from 10 km to 200 km. 

 
TABLE I 

UPPER FREQUENCY LIMIT FOR BOTH LINE TERMINATIONS 

Line 

length 

(km) 

Open-

circuit 

(kHz) 

Short-

circuit 

(kHz) 

10 51.38 117.60 

20 25.50 58.52 

50 12.98 23.37 

80 8.06 16.30 

100 7.86 14.43 

150 6.18 10.60 

200 5.32 8.58 

 

Results show that flim can be directly related to fres of (2), 

since it decreases as line length increases for both termination 

cases. Equation (4) accurately fits the results of Table I for 

both cases, expressing the relation of the upper frequency limit 

with the first order resonance frequency and the line length for 

overhead lines. 

 

       0.046 6   lim resf kHz km f kHz  (4) 

D.  Selection of Spatial and Time Intervals 

A minimum number N of cascaded PI-equivalents must be 

used, in order to adequately simulate the distributed nature of 

the examined power transmission line. The minimum number 

should be sufficient enough to accurately simulate the 

examined transmission line for frequencies up to flim. This is 

readily performed by comparing the FD behavior of the 

cascaded PI-equivalents to the corresponding of the exact 

longitudinal line model for each considered length [18]. 

From this analysis the minimum required number of 

cascaded PI-equivalents is presented in Fig. 8 for different line 

lengths, assuming both the open- and short-circuit cases of 

Fig. 1. Results present a linear pattern with line length, which 

can be best approximated by (5). In order to further simplify 

the analysis, a fixed number of 100 and 200 PI-equivalents can 

be considered for the open- and short-circuit case, 

respectively, yielding results on the safe side for all line 

lengths. 
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Fig. 8.  Minimum required number of cascaded PI-equivalents and best linear 

fit for both termination cases. 
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After N has been defined, the spatial interval Δx can be 

directly calculated by (6), while the corresponding time 

resolution Δt can be defined by the one-dimensional Courant-

Friedrichs-Lewy condition shown in (7) [19], assuming the 

asymptotic velocity of (3). 

 

 Δx
N
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E.  Application of LPFs 

Since TD simulations have been carried out using the 

cascaded PI-equivalent model and the parameters of (5)-(7), 

the transient responses are subject to user-defined LPFs in 

order to damp out the resulting artificial oscillations. In this 

paper two different filters are examined, namely the IIR and 

FIR filters, both characterized by zero phase shift, and thus do 

not introduce any time delay in the filtered transient responses 

[20]. 

More specifically, the IIR filter is based on a Chebyshev 

type I filter with its typical transfer function magnitude shown 



in Fig. 9. The passband ripple is set to 0.05 dB, the cutoff 

frequency is set to flim of (4), while the stopband frequency and 

its attenuation are set to 4  limf  and 20 dB, respectively. 
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Fig. 9.  Bode magnitude plot of IIR Chebyshev type I filter. 

 

The FIR filter is based on the equiripple design scheme 

with its typical transfer function illustrated in Fig. 10. Once 

again, the cutoff frequency is set to the upper frequency limit 

of (4), while the frequency limits of the passband and stopband 

are set to 0.4  limf  and 1.6  limf , respectively. Furthermore, the 

passband ripple and the stopband attenuation are set to 

0.05 dB and 10 dB, respectively. 
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Fig. 10.  Bode magnitude plot of FIR Equiripple filter. 

V.  RESULTS 

A.  FD Voltage Ratio 

The performance of the proposed methodology using both 

types of LPF is first demonstrated in the FD calculation of the 

open-ended voltage ratio for the line configuration of Fig. 1. 

Results of Fig. 11 show the difference between the exact 

longitudinal line model and the lumped-parameter cascaded 

PI-equivalent approach, which is observed above the upper 

frequency limit of 7.95 kHz. The filtered FD responses 

significantly attenuate the spectrum context above flim, without 

affecting peaks in the passband range. However, this is not the 

case for the traditional method, where the inclusion of 

damping resistances slightly modify the spectrum context 

below the upper frequency limit and thus leads to calculation 

errors. 
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Fig. 11.  FD voltage ratio for different line realizations. 

B.  TD Transient Response 

Additionally, both filters are applied to the fast front 

transient response of Fig. 2. Results, presented in Fig. 12, are 

compared to the corresponding of the Bergeron and NLT 

models. The spurious oscillations caused by the cascaded PI-

equivalents are significantly damped by both filters as well as 

by the traditional method. 

The performance of the proposed methodology is even 

more pronounced in the peak voltage profile of Fig. 13, where 

a significant difference is observed compared to the result of 

the cascaded PI-equivalents, without applying any damping 

method. Although all results are on the safe side compared to 

the corresponding of Bergeron and NLT, the FIR filter seems 

to yield more accurate results than the IIR filter and the 

traditional method.  
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Fig. 12.  TD transient response for different line realizations. 
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Fig. 13.  Peak voltage profile along line length for different line realizations. 

VI.  GENERALIZATION OF PROPOSED METHODOLOGY 

The proposed methodology can be readily applied to 

multiconductor overhead lines by adopting the same equations. 

Three conductors similar to the one of Fig. 1 are placed in a 

typical flat configuration, forming a three-phase overhead line. 

Assuming the same geometrical and electrical data, a three-

phase switching transient phenomenon is simulated using the 

cascaded PI-equivalents approach, the proposed methodology, 

the traditional method with damping resistances as well as both 

Bergeron and NLT models. Results, shown in Fig. 14, present 

a similar behavior to the corresponding of Fig. 12 for the 

single-phase overhead line. It is evident that both post-

processing filters present a more efficient attenuation of the 

spurious oscillations compared to the traditional method.  
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Fig. 14  TD transient response of phase a for the three-phase overhead line 

with different line realizations. 

VII.  CONCLUSIONS 

In this paper a post-processing method has been presented 

to damp out the numerical oscillations caused by the lumped-

parameter modeling of overhead transmission lines. 

Specifically, the performance of two different LPFs has been 

examined and compared to a traditional method for alleviating 

oscillations as well as to TD and FD models. The main 

remarks indicate that: 

 Both LPFs are quite efficient, significantly damping 

out the spurious oscillations. This is indicated in both 

TD transient responses and peak voltage profiles. 

 The performance of FIR filter seems to be better 

compared to the corresponding of IIR filter and of the 

traditional method. Using the FIR filter, a smaller 

overshoot is observed on TD transient responses, 

while the peak voltage profile levels are also closer to 

the corresponding of TD and FD models. 

 The formulation and application of the proposed 

methodology is very straightforward, since it is a 

post-processing method without affecting the time-

domain simulation routine. 

 The proposed methodology can be readily 

generalized for multiconductor transmission lines, 

without altering the proposed empirical formulas of 

flim and N. 

Finally, as a topic for future research, the proposed 

methodology could be also extended on underground 

configurations, by modifying accordingly the equations 

calculating the upper frequency limit and the required 

minimum number of cascaded PI-equivalents. 
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