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Abstract-- The full-wave model of underground cables is 

presented. The solutions of this model in frequency domain, 
applied in underground insulated, cable is evaluated. To allow 
the inclusion of this formulation in EMT programs a rational 
vector fitting of the propagation constant, characteristic 
admittance Yc and the propagation function H in frequency 
domain is presented. The simulations in time domain is carried 
out considering different soil models. The results are compared 
with those obtained using a conventional quasi-TEM (Transverse 
Electro-Magnetic) approximation. This comparison shows that 
the quasi-TEM approximation can provide a good approximation 
for all the considered soil models. 
Keywords: Electromagnetic transients, Full-wave formulation, 

Underground Cables  

I.  INTRODUCTION 
HE first attempts to describe the influence of external 
media in propagation characteristic of transmission line 

and underground cable was proposed, respectively, by 
Carson [1][2] and Pollaczek [3] in the 1920s. These works are 
based on the quasi-TEM mode of propagation, i.e., the current 
density vector does not depend on the yet unknown 
propagation constant. Furthermore, the expressions of ground 
return impedance assume the ground as a good conductor, i.e. 
neglecting displacement currents and assuming ground 
permeability the same as in the air. These limitations 
motivated the development of a full-wave model to provide a 
better understanding of the influence of a dispersive ground on 
the parameters per unit length (p.u.l.), i.e. series impedance 
and shunt admittance of the line.  Kikuchi [4] was the first to 
obtain a solution to the propagation of a full-wave model 
using the magnetic vector and the electric scalar potentials.  
Wait [5] using both electric and magnetic Hertz vectors 
developed a solution for a full-wave model. Wedepohl and 
Efthymiadis [6] proposed to use Transverse Electric (TE) and 
Transverse Magnetic (TM) propagation decomposition with 
magnetic and electric vector potentials to achieve a solution to 
the full-wave model. In all these works, only single-phase 
overhead conductors are considered, an extension of the full-
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wave model to an underground cable was proposed by Wait 
in [7].  

One of the key aspects in the development of a full-wave 
model is the solution of the so-called modal equation, i.e., 
solve the integration equation that derives the propagation 
function and then evaluate the line parameters using infinite 
integrals. Furthermore, full-wave models have been used to 
investigate the behavior of the electromagnetic field 
surrounding an underground cable [8]. That is the main reason 
why approximated formulas were proposed in the past. 

For the analysis of electromagnetic transients where the 
line model must be adapted to two Norton equivalents 
representing the sending and receiving end of the underground 
cable. This modeling of a distributed and frequency dependent 
line or cable is known as the Method of Characteristics (MoC) 
or the travelling wave method. In the time-domain modeling 
of a full-frequency dependent line or cable one must resort to 
the fitting of the characteristic admittance Yc and propagation 
function H in the frequency domain [15]-[12]. If we determine 
the propagation constant and then obtain the p.u.l parameters 
the procedure of a full-wave model could be straight forward 
adapted. Therefore, the main goal of this paper is to proposed 
and analyze a full-wave model in order to assess if significant 
differences are found, considering the scenarios were the 
quasi-TEM approach is typically used.  

This work is organized as follows. In section II we present 
the full-wave model of an underground cable. In section III we 
present the frequency responses of impedance and admittance 
p.u.l. and the frequency responses of Yc and H and in section 
IV we present their rational approximation. Time domains 
simulation of a 300 m cable are shown section V and the main 
conclusions of this paper are presented in section VI.  

 

II.  FULL-WAVE UNDERGROUND CABLE 

The full-wave model presented here was originally formulated 
by Wait in [5] and extended in [13][14] to include the effect of 
conductor losses. For this formulation, we consider two semi-
infinite media respectively named “1” and “2” as depicted in 
Fig 1. In medium “1” there is an infinitely long conductor 
where the injected current has the form 

max exp( )I I z j tγ ω= − + where γ is the unknown propagation 
constant to be determined. The electric and magnetic field in 
both media can be expressed by two Hertz Vectors, one of the 
electric type, EΠ  and other of the magnetic type, MΠ . So the 
fields in media i are given from 

T 



 
Fig. 1. Conductor configuration 
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Both Hertz vectors have a single component in the direction of 
propagation and its relation with vector potential, A, and 
electric scalar potential ϕ  can be obtained by 

( ) , .E M EA jµ σ ωε µ φ= + ∏ + ∇×∏ = −∇ ∏  (2) 

Assuming the continuity of tangential components of iE  and 

iH is possible to obtain an expression for the electric field in 
both media. The modal equation is found considering the 
electric field null at the surface of the conductor. This 
procedure is explained next for the case of a buried insulated 
conductor. 
 

A.  Full-Wave Modal Equation 
For a solid buried insulated cable with inner radius 0r  and 

an insulation layer between 0r  and the outer radius r  with a 
permittivity dε , buried at depth h, the modal equation that 
defines the behavior of the unknown propagation constant γ  
is written as   
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where zint is the conductor internal impedance given by  
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where µc and σc
  are the magnetic permeability and 

conductivity of the conductor, respectively, and I0 and I1 are 
modified Bessel functions of the first kind, zero and first 
order, respectively. c c cjγ ωµ σ≈  is the conductor 
propagation constant, zd and yd are, respectively, the 
impedance and admittance per unit length of the cable 
insulation layer is given by 
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S1 and S2  are the Sommerfeld integrals given by 
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with, 2 2 2
1 1u λ γ γ+ −= , 2 2 2

2 2u λ γ γ+ −= , and 

2 0 0 0jγ γ ω µ ε==  is the propagation constant of air. 

0 1 0 1( ) ( ) K r K dη ηΛ = −  where K0 is the modified Bessel 

function of the second kind, zero order with 2 2
1 1η γ γ= − and 

2 24d h r= + . 
 

B.  Impedance and Admittance  
To define the propagation characteristics we must solve the 

wave equation 
2 2

2 2,d U d IZYU YZI
dz dz

= =  (8) 

where I is the underground cable current and U is the wire 
voltage to ground given by  
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and ϕ  is the electric scalar potential and yA  is the y-
component of the magnetic vector potential. 

For an insulated buried cable, the impedance per unit 
length is given by 

int d extZ z z z= + +  (10) 
The admittance per unit length is defined as  

( ) 11 1
d extY y Y

−− −= +  (11) 

In the evaluation of both Z and Y, only the terms zext and 
Yext are dependent on the propagation constant γ, which may 
be obtained from the solution of the modal equation in 
expression (3). Thus, zext and Yext are the ground return 
impedance and admittance based on full wave, respectively, 
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C.  Characteristic Admittance and Propagation 
Function 

In the full-wave formulation, as well as Z and Y, both Yc 
and H are dependent of unknown propagation constant. For a 
single-phase cable both quantities are scalars. The relation 
between the voltage and current waves is given by the 
characteristic admittance 

1
c Z γ−=Y  (15) 

and the delay and distortion of the these waves propagating 



between the line ends of length l is given by the propagation 
function 

le γ−=H  (16) 
 

III.  FREQUENCY DOMAIN RESPONSES 

A.  Propagation Constant 
Consider a conductor buried at 1h = m in a dispersive 

ground with 0.01gσ =  S/m and 10rgε = . The ground 

propagation constant is ( )0g g g rgj jγ ωµ σ ωε ε= +  with gµ  

and 0ε  being the vacuum magnetic permeability and electric 
permittivity, respectively. We consider that the insulation 
layer is lossless with a relative permittivity 3rdε = . The real 
part of gγ  (attenuation constant) is shown in Fig. 2 together 
with the results for the full-wave model considering a a 
frequency range of 1 kHz to 10 MHz. For the same frequency 
range, Fig. 3 depicts the imaginary part of ground propagation 
constant, gγ , (phase constant), the air propagation constant 
and the results for the imaginary part of the propagation 
constant obtained using the full-wave model.  

 
Fig. 2. Attenuation constant 

 
Fig. 3. Phase constant 

 
For the bare cable, it was observed that the propagation 

constant is almost the same as the ground propagation 
constant. For the insulated cable, regardless of the thickness of 
the insulation layer, the same behavior at the higher frequency 

was found in all cases, they all tend to ground propagation 
constant for frequencies higher than 1 MHz. Although not 
shown here, the same behavior was found for bare and 
insulated cables buried at different depts. 
 

B.  Impedance and Admittance 
For the evaluation of the pul parameters, we have 

considered different soils models. The first soil model is a 
frequency independent soil model considering the ground 
conductivity and permittivity, i.e. considering ground 
displacement currents. The second soil model is a frequency 
dependent model proposed by Portela in [18] and is 
characterized by the propagation constant in (17) 
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where 0 0.01σ =  S/m, 1 11.71Δ =  and 0.706iα = . The last 
soil model considered is the one proposed by Visacro and 
Alípio in [19] where propagation constant is given below  
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A comparison between impedance admittance responses for 
these soil models is presented in Figs. 4 and 5. In the 
aforementioned figures we have only presented the module of 
the impedance and admittance per unit of length. In these 
figures, the label C indicates the frequency independent soil 
model considering both conductivity and permittivity, the soil 
model based on (17) has the label P and the one based on (18) 
has the label V.  Although not shown here in detail, there are 
small differences between the phases of the pul parameters for 
the frequency dependent soil models that can cause 
differences in both Yc and H as it will be shown next. 
 

 
Fig. 4. Comparison of impedance magnitude p.u.l  



 
Fig. 5. Comparison of admittance magnitude p.u.l.  

 

C.  Characteristic Admittance and Propagation 
Function 

For the same frequency range Figs. 6 and 7 show the 
responses of characteristic admittance, Yc, and propagation 
function, H. 

 
Fig. 6. Characteristic admittance 

 

 
Fig. 7. Propagation Function 

 

IV.  RATIONAL APPROXIMATIONS IN FREQUENCY DOMAIN 
For the rational approximation we used the Vector Fitting 

routine [15][16][17]. Typically, it can provide an accurate 

rational approximation of a given frequency response using 
real and complex poles that come in conjugate pairs. The 
approximation has the following form:  

( )
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c
f s se d

s a
= + +

−∑  (19) 

where na  are the poles and nc are the residues while the terms 
e and d are real and constant and N is the total number of 
poles.  

For the full-wave time domain simulations the quantities of 
interest that need to be synthesized are the characteristic 
admittance Yc and the propagation function H. Nevertheless 
these quantities are implicit functions of the full-wave 
propagation constant. In this work we propose the following: 
fit we obtain the full-wave propagation function using a few 
frequency samples, say 100 frequencies. We subject this result 
to a rational approximation using VF. Now using the fitted 
propagation function in a larger sample of frequencies we then 
evaluate the infinite integrals (7) and (14) and obtain the pul 
parameters which in turn are used to evaluate both Yc and H. 
These are then subject to a rational approximation. 
 

A.  Synthesis of Propagation Constant  
The propagation constant response in frequency domain 

was obtained by solution of the full-wave modal equation that 
satisfies the zero equal identity. This result was subjected to 
vector fitting routine for all ground models. The Table I shows 
the poles number and the RMS error found in synthesis of 
propagation constant for each ground model. 

 
TABLE I  

NUMBER OF POLES AND RMS ERROR OF ADJUST OF PROPAGATION CONSTANT 
Soil Model Nº of Poles RMS Error 

Conventional “C” 36 1.5 10-3 

Portela “P” 36 9.41 10-4 
Visacro “V” 36 6.86 10-4 

 
The Fig. 8 depicts the fitting results for the propagation 

constant considering the three soil models. Fitted quantities 
have an index AD in this figure. We separate the deviation 
results from the fitted results to better visualize the deviation 
associated with the synthesis of each soil models and we adopt 
this strategy in all figures of this work. The differences 
between the original and adjusted functions are shown in Fig. 
9. The deviation was calculated by fitγ γ γΔ = − . Although 

there are some noticeable differences between the fitted and 
the original parameters, as it will be shown here, these 
mismatches do not affect significantly the evaluation of the Yc 
and H.  
 

B.  Synthesis of Characteristic Admittance 
The synthesizing process of characteristic admittance was 

the same for the propagation constant. The number of poles 
and the related RMS error is shown in Table II. 

The original results of characteristic admittance and the 
results of adjust (index AD) are shown in Fig. 10 and the 



differences between them are sown in Fig. 11. 
 

TABLE II 
NUMBER OF POLES AND RMS ERROR OF ADJUST OF CHARACTERISTIC 

ADMITTANCE  
Soil Model Nº of Poles RMS Error 

Conventional “C” 12 41.957 10x −  
Portela “P” 12 41.009 10x −  
Visacro “V” 12 41.608 10x −  

 

 
a. Attenuation constant 

 
b. Phase constant 

Fig. 8. Fitted Propagation constant 
 

 
Fig. 9. Deviation of fitted propagation constant 

 

 

 
Fig. 10: Fitting result for the characteristic admittance. 

 
Fig. 11. Deviation of fitted characteristic admittance 

 

C.  Synthesis of Propagation Function 
The synthesis of propagation function, H, was different of 

the synthesis of propagation constant and characteristic 
admittance. In this case is necessary to determine and extract 
the time delay before submitting the propagation function to 
the vector fitting routine, so H can be approximated by 

1

N
sn

fit
n

c
H e

s a
τ−≈ =

−∑H  (20) 

where τ is the time delay.      
For the time delay identification we use the Brent`s 

method described in [12]. This method consist in specification 
of an time delay interval min maxτ τ τ≤ ≤ where the propagation 
function is subject to the vector fitting and the time delay is 
the value of τ  that provides the lowest RMS error. The 
minimal time delay was defined as the lossless time delay 

min
cv

τ = l being l  the cable length and cv the velocity of the 

fastest mode. For the maximum value we have  
( )
( )max Im[ ]

ω
τ

γ
Ω

=
Ω

 (21) 

where Ω is the highest frequency considered. With the 
calculated value of time delay the propagation function was 
subject to the vector fitting routine as 

sh e τ= ⋅H  (22) 



The results of the number of poles, RMS error and the time 
delay found are shown in Table III for each ground model. 
 

TABLE III 
NUMBER OF POLES AND RMS ERROR OF ADJUST OF PROPAGATION FUNCTION 

Soil Model Nº of Poles RMS Error Time Delay [s] 

Conventional “C” 12 47.172 10x −  66.493 10x −

 
Portela “P” 12 45.642 10x −  66.442 10x −

 
Visacro “V” 12 49.946 10x −  67.693 10x −

 
 
The originals results of H and the results of synthesis (index 
AD) are depicted in Fig. 12 and the respective deviations are 
shown in Fig. 13. 
 

 
Fig. 12. Rational fitting of propagation function H 

 

 
Fig. 13. Error in the rational approximation of H  

 

V.  TIME DOMAIN SIMULATIONS 

For the time domain simulations we consider an insulated 
buried cable according to the Fig. 14 where 0.01cr =  m is the 
conductor radius and 0.012dr =  m is the insulation layer outer 
radius. The different ground models are considered. 
Furthermore, we also consider the quasi-TEM approximation 
of the external impedance and admittance. The formulation of 
this approximation is presented in Appendix A.  

  
 

 
a. 

 
b. 

Fig. 14: a. Underground Cable System and b. Circuit Configuration. 
 

A.  Voltage Step Response 
The results of voltage step response are shows in Figures 

(15) and (16)  
 

 
Fig. 15. Voltage step responses: FW- full-wave model and AD- rational 

approximation of full-wave model 
 
These results show that except the intrinsic differences of 

each ground model, there are no differences between the full-
wave model with and without synthesis. Furthermore the 
differences between the results of the full-wave model and the 
results of a conventional quasi-TEM approximation are very 
small and for a practical cases do not result in any significant 
loss of information for the system in study. 
 

B.  Heidler Voltage impulse Responses 
For the time-domain simulations we consider that an 

impulse voltage is injected at the conductor in terminal “1” 
(see Fig. 14), while the terminal “2” is open. The impulse 
voltage using the Heidler function as shown in expression 



(23), where 
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The time domain results are shown in the following figures. 
 

 
Fig. 16. Voltage step responses: FW - full-wave model and QT- quasi-TEM 

approximation 
 

 
Fig. 17. Impulse responses: FW- full-wave model and AD – rational 

approximation of full-wave model 
 

 
Fig. 18. Impulse responses. FW - full-wave model and QT - quasi-TEM 

approximation 
 

VI.  CONCLUSIONS  
The main contribution in this work is evaluating the 

accuracy of the quasi-TEM approximation in modelling an 
underground cable for EMT simulations, by comparison with 
the full-wave model results. 

It is shown that, in fact, we need not to resort to a full-
wave model, which is very hard to solve, since the quasi-TEM 
approximation is much easier to solve in addition to having 
the extension to the tree-phase systems. For the required 
accuracy, the quasi-TEM approximation is able to represent 
completely the influence of external media in propagation 
characteristic of underground cables. 

The full-wave model for an insulated buried cable was 
presented. The parameters per unit length (impedance and 
admittance) were derived directly from the full-wave modal 
equation. These parameters were evaluated, in frequency 
domain, for different soil models. The results were important 
to determine the behavior of the characteristic admittance and 
the propagation function that defines the behavior of the cable.  

For the time domain simulations, the rational 
approximation in frequency domain is necessary, and the 
propagation constant, characteristic admittance and 
propagation function were synthesized using the vector fitting 
routine. The results of synthesis in time domain were 
compared with the full-wave without synthesis and with a 
conventional quasi-TEM approximation. 

Results show that the quasi-TEM approximation can 
provide a good approximation for all the considered soil 
models. 
 

VII.  APPENDIX A – QUASI-TEM APPROXIMATION. 
For the Quasi-TEM Approximation we assume that for the 

frequency range of interested (100Hz to 30MHz) the value of 
propagation constant can be neglected in the calculation of 
ground return impedance and admittance. This fact can be 
seen by the response of propagation constant of insulated 
cable in frequency domain in Fig. 2 and Fig. 3. This 
approximation we consider 1γ γ=  thus the following holds 

2 2
1 1 1u uλ γ= + = ; 2 2

2 2 2u uλ γ= + = ; 1 1η γ=  and the 
ground return impedance and admittances are given by 
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and where r is the external radius of the conductor, i.e., 
considering the insulation layer, 2 2(2 )d h r= + . The 



propagation constant is then calculated as: 
1 1 1

int( ).( )d ext d extz z z y Yγ − − −= + + +  (A.3) 
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