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Abstract--The analytical modeling of a three-core cable system 

is challenging because of the non-concentric configuration of the 
components involved. Given these limitations, a 2D finite element 
modeling of the cable is developed in order to obtain the values of 
the self, mutual and sequence impedances and admittances. To 
calculate the series impedance, a magnetic vector potential 
magnetodynamic formulation is used and for the calculation of 
the parallel admittance, an electric scalar potential electrostatic 
formulation is applied. By calculating the series impedance of the 
inner cables, the influence of the mutual impedances in all 
metallic elements involved is shown. The methodology is applied 
to a typical cable of 300 mm² - 18/30 kV. The numerical results 
are compared with analytical ones and with values supplied by 
the manufacturer for each phase, validating the numerical 
modeling. 
 
Keywords: Submarine power cable, 2D finite element method, 

impedance, admittance.1 

I.  NOMENCLATURES  

I0 ( ) Bessel functions of first kind and order 0. 
I1 ( ) Bessel functions of first kind and order 1. 
 Electric conductivity, in S/m. 
 Electric resistivity, in  m. 
 Electric permittivity, in F/m. 
 Magnetic permeability, in H/m. 
 Magnetic reluctivity, in m/H. 
SC Semiconductor 
M Matrix composed by matrixes. 
m Matrix composed only by scalars. 

V


 v


 Vector. 

( . , . ) Volume integral in  of products of scalar or 
vector fields. 

< . , . > Surface integral on  of products of scalar or 
vector fields. 

Im( . ) Function that returns only the imaginary part of a 
complex number. 

 Electrical angular frequency. 
FEM Finite Element Method. 
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II.  INTRODUCTION 

HE expansion of submarine transmission systems 
represents a major trend due to the growth of the oil and 

offshore wind energy industry. The deployment of these 
systems at large distances from the shore and in deep water 
requires kilometric stretches of submarine power cables. 

Fed equipment or systems, as well as cables, need to be 
adequately protected in case of short circuits, overloads and 
transients. An accurate cable model is needed to accurately 
represent the waveforms of voltage and current on the load 
and the transmission line providing technical support for the 
choice of the most suitable protection to be adopted for each 
situation. 

When one considers the cable as single-core, the phases 
distributed impedances and admittances of the cable for a 
certain range of frequencies can be calculated analytically 
applying classical analytical formulae ((4), (6), and (11)). 
However, in three-core cables, even at 50/60 Hz, the 
following aspects should be taken into account when 
modeling: (i) proximity effect generated by the currents of the 
central conductor; and (ii) current induced in the sheath and its 
effects on the central conductor impedance [1]. 

The non-concentric configuration of the trefoil formation 
(Fig 1) hampers the analytical modeling. Thus, a 2D finite 
element model is developed to obtain the values of the cable 
series impedance and parallel admittance.  

Some studies about cable modeling are presented in [1-6] 
and [16-22]. 

III.  BASIC CHARACTERISTICS OF A SUBMARINE POWER CABLE 

The physical constitution of submarine power cables is 
very similar to underground power cables. 

The main difference is that in the first, there are additional 
protections for water entry (Fig. 1 and Table 1). In this 
section, we briefly describe the constituent parts of the 
submarine power cable as well as the aspects related to the 
calculation of its series impedance. Each part of the inner 
cable is described in Table 1. Small variations may occur from 
one manufacturer to another. 

The cable of this study is composed of a set of three power 
inner cables in trefoil formation, as shown in Fig. 1. Parts 10-
11, 11-12 and 12-13 consist of insulating material, conductor, 
and insulating, respectively. The conductive layer, called 
armor, has the main function of mechanically protecting the 
set. 

T



 
Fig. 1.  Set of inner cables in trefoil formation of a three-core submarine 
power cable. 
 

TABLE 1 

PARTS OF A POWER INNER CABLE 

Item Component Material 

1 Core Copper Stranded Wires 

2 Water-blocking tape Humidity absorber SC tape 

3 Conductor Shield SC tape 

4 Insulation XLPE 

5 Insulation Shield Humidity absorber SC tape 

6 Water-blocking tape Humidity absorber SC tape 

7 Sheath Copper wires 

8 Water-blocking tape Humidity absorber SC tape 

9 Jacket Polyethylene 
 

IV.  HOMOGENIZATION OF THE CORE 

Because the materials are composed of several parts, 
homogenization techniques are applied to model them as 
solids used for both numerical and analytical approaches. 

Homogenization in the core due to the natural gaps of the 
stranded conductor is made by the correction (increase) in 
resistivity since the core is now considered massive. This is 
done by applying: 

 c c ck     (1) 

where ρ’c is the corrected resistivity of the central conductor, 
kc is the area correction factor (kc =  rc

2/An), rc is the core 
radius, and An is the nominal area provided by the 
manufacturer’s catalog. 

Homogenization in sheath also depends on the composition 
of the material used. Therefore, its corrected resistivity is 
given by: 

 s s sk     (2) 

V.  HOMOGENIZATION OF THE INSULATION 

Between the core and insulation and sheath and insulation, 
there are semiconductor tapes which have the function of 
uniformly distributing the electric potential. These three 
materials are homogenized as one. For this, a correction must 
be applied to the insulation electric permittivity given by: 
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where cs	is	the	original	insulation	permittivity,	and a and b 
are the inner and outer radii of the insulation, respectively. 

VI.  SERIES IMPEDANCE 

The analytical modeling for non-concentric conductors, 
like the case of the three-core cables, is a very complex task. 
A full analytical computation of a submarine cable can be 
found using the pipe-type cable formulas from [3]. As 
explained in [4] there are some approximation in this, because 
of the representation of the armor.  

Subsection A presents a way to calculate the phase 
impedance for a single-core cable, where only the impedance 
in a single inner cable can be considered without mutual 
couplings with any other metallic part of the cable. However, 
in the numerical approach, all couplings involved are 
regarded. 

A.  Analytical Approach 

According to [3], [2], and [4], the impedance of each core 
per unit of length is given by: 
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where c is the intrinsic medium impedance, given by: 

 c c cj   .  (5) 

The core impedance zc have one real part that represents 
the core resistance; and other part imaginary, that represents 
the internal core inductance times the electric angular 
pulsation. 

The phase inductance is given by the sum of internal and 
external inductance. For a single core conductor, the external 
inductance is given by: 
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However (6) considers the current of central conductor 
returning by sheath. For three-core cables, the current returns 
by other phases, creating a bigger area for the magnetic flux, 
that now is the area between two phases. So (6) becomes: 
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where D is the distance between cores in the trefoil formation. 
For other formations, the geometric mean must be applied. 

Equation (7) is accurate and frequently used for impedance 
calculation at 50/60 Hz. For bigger frequencies, it is necessary 
to consider the sheath effects as covered by [5][6]. 

B.  Numerical Approach 

In order to find the self and mutual impedances of all 
metallic parts of the cable, a 1 A current is applied at one 
metallic element and measured the voltage in this and others. 
The self impedance is found by dividing the induced voltage 
by the current at the element that the current is applied. The 
mutual impedances are found by dividing the induced voltage 
at the elements that have no current by the current that 



produced this induction. 

C.  Cable Impedances 

Fig. 2 presents a three-core cable impedance diagram 
where: (i) the letters a, b, and c represent each core; (ii) the 
numbers 1, 2, and 3 represent each sheath; (iii) and g 
represents the armor. 

The voltage drop from g to g' on conductors are: 
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Fig. 2.  Representation of three-core cable impedances. 
 

In [5] it is proved that the sequence impedances for 
interconnected sheaths are: 
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If the sheaths are not interconnected at both terminals, or 
are interconnected only at one point (grounded or not), there is 
not circulation current and the sequence impedances become 
[1]: 
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VII.  PARALLEL ADMITTANCE 

There are three kinds of admittances on three-core cables: 
(i) core-sheath, (ii) sheath-sheath, and (iii) sheath-armor. Only 
the core-sheath armor is analytically feasible, given by: 
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where cs is the insulation conductivity and cs is the 
corrected permittivity of the insulation. Because of the high 
resistivity of the insulating materials, only the capacitances on 
them are considered (see Section VIII-B). The three-core 
cable capacitance diagram is shown in Fig. 3. 

In addition, a numerical approach is performed and 
compared with the analytical results for this capacitance. 
However, for sheath-sheath and sheath-armor capacitances, 
only numerical results are considered due to the non-
concentricity between these parts. The leakage currents on 
insulations from g to g’ in phases are: 
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where ycc, ycs, yss and yss are, respectively, the core self-
admittance, core-sheath mutual admittance, sheath self-
admittance and sheath-sheath mutual admittance.  
 

 
Fig. 3.  The three-core cable capacitance diagram. 
 

By using the technique presented in [7] it is possible to get: 
 1cc cs ay y y   ,  (13) 

 1 1 12 311 1ass gy y y y yy       (14) 

 12 13ssy y y      (15) 

VIII.  NUMERICAL MODELING USING FEM 

To perform the numerical modeling, the software Gmsh [8] 
and GetDP [9] are  used. Gmsh is the pre and post-processor 
and the GetDP is the solver. The problem is implemented in 
the software by two codes: one that defines the geometries and 
the mesh of the structure (“.geo” file) and other that defines 
the physical proprieties of the materials, the constraints and 
the formulation to be used (“.pro” file). 

The electrostatic formulation used to calculate of the 



parallel admittance is given by: 
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where V is the electric scalar potential, V' is the test function 
for scalar potential, V is the volume charge density, n


 is the 

unit normal vector exterior to , and n D


 is a constraint on 
the electric flux density associated with nonfixed potential 
boundaries D of the domain , e.g. on floating potential 

boundaries f  [14]. 

Fv () denotes the function space defined on , which 

contains the basis and test functions for both scalar potentials 
V and V' [14]. At the discrete level, Fv () is approximated 

with nodal finite elements. 
The harmonic magnetodynamic formulation used to 

calculate of the series impedance is given by: 
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where  is the electric conductivity defined on conducting 

parts c of , A


 is the magnetic vector potential, A


 is the 

test function for vector potential, sJ


 is the source electric 

current density defined in s, and sn H


 is a constraint on the 

magnetic field associated with boundary H of the domain  

[15]. Fa () denotes the function space defined on  which 
contains the basis and test functions for both vector potentials 

A


  and A


. 

IX.  METHODOLOGY 

The physical and geometric data cable is obtained from 
manufacturer’s catalog [10], for a three-core cable in trefoil 
formation. 

Due to the complexity of the cable geometry, some 
simplifications like homogenization are required. In addition, 
it is imperative that some correction factors be applied before 
starting the simulation as explained in Section II. 

A.  Physical and geometry constants used in the model 

At the central conductor, the copper resistivity is 
considered (17.24 nΩ m). It is then corrected for a temperature 
of 90°C followed by an equivalent area (homogenization) 
resulting in a resistivity ρc of 23.57 nΩ m. 

The transversal magnetic permeability used for all 
materials is considered μ0, even the armor, because it is 
composed of wires that are not in direct contact [11]. 

The cable is considered as totally surrounded by seawater 
with a conductivity of 5 S/m [12]. 

B.  Simplified diagram of the cable 

The parts considered for the cable model (analytic and 
numeric) are all solids and represented by Table 2 and Fig. 4. 

C.  The Finite Element Approach Implementation 

Initially it is necessary to implement the surfaces (.geo file) 
from the model as shown in Table 2 and Fig. 4. In the same 
file, the mesh density factors must be inserted set in each point 
of the geometric figure. 

Based on the geometry file, a mesh is built by Gmsh. 
Fig. 5(a) shows the mesh of the whole calculation domain 
while Fig. 5(b) shows the mesh of the lower left inner cable of 
the three-core cable, respectively, for the calculation of series 
impedance. 

Both figures are shown with the aim of highlighting the 
mesh density utilized. Region A is a necessary region in order 
to avoid domain truncation errors, where the magnetic vector 
potential on its outer circle is zero. The physical constants 
values in this region are the same values as region B. 

When calculating the parallel capacitance the electric scalar 
potential at the armor is set to zero. 
 

TABLE 2 

PARTS OF A POWER INNER CABLE 

Item Radius [mm] 

1 10.20 

2 20.60 

3 20.72 

4 24.00 

5 51.75 

6 53.75 

7 57.95 

8 61.95 
 

 
Fig. 4.  Set of inner cables in trefoil formation of a three-core submarine 
power cable. 
 

 

             

                        (a)                                                            (b) 
Fig. 5.  Diagram and mesh for calculation of the series impedance. In (a) is the 
domain of calculation and in (b) the mesh detail of one power inner cable. 
 



D.  Obtaining the mutual and self-impedances and 
admittances 

In order to find the self and mutual impedances of all 
metallic parts of the cable, the circuit presented in Fig. 6 is 
implemented and the technique explained in Section IV-B is 
applied. 

The sequence impedances are also obtained where three 
short-circuited cores are fed by a 1 V / 50 Hz three-phase 
sinusoidal source (Fig. 7). For this implementation, two 
considerations are made: (i) with the sheath and armor 
opened; and (ii) with all sheaths interconnected at both ends 
and these connected to the respective armor end. The armor 
potential is considered floating (Fig. 7). 

The representation of the diagrams shown in Fig. 6 and 7 
illustrates as the electrical circuits are considered in GetDP. 
However, the modeling is carried out in two dimensions. 

In order to find the parallel capacitance we apply the 
Maxwell Capacitance Matrix concept [7]. Firstly, a 1 V 
potential is applied on the core and zero on all other parts. The 
result is the core self-capacitance. After that it is applied a 1 V 
on the sheath and zero on all other parts (Fig. 8). From this 
measurement we find the sheath’s self-capacitance which is 
the sum of sheath-core, sheath-sheath (2 times), and sheath-
armor capacitances. 

 
Fig. 6.  Circuit diagram implemented in GetDP to determine the core self and 
mutual impedances. 
 

 
Fig. 7.  Circuit diagram implemented in GetDP to determine the phase 
sequence impedances. 

 

 
Fig. 8.  Circuit diagram implemented in GetDP to determine the sheath self-
capacitance. 

To find the sheath 1-sheath 2 capacitance, is imperative, for 
instance, to apply 1 V to core a, sheath 1, core c, sheath 3, and 
armor, and zero on all other parts. The capacitance sheath 1-
sheath 2 is obtained with basis on the electric flux that goes 
out from surface sheath 1. A similar procedure is applied to 
find core-sheath and sheath-armor capacitances. 

Finally, the numerical results are compared with the 
analytical ones and also with the values supplied by the 
manufacturer for each phase, validating the numerical 
modeling. 

X.  RESULTS AND VALIDATION 

The presentation of results is divided into two parts: 
(i) analysis of impedances, and (ii) analysis of admittances. 
Validations are made by comparison with analytical methods, 
when possible, and with manufacturer’s catalog [10] for the 
frequency of 50 Hz. 

A.  Series impedance 

At 50 Hz when we apply a current of 1150 A / 50 Hz to 
the core a (Fig. 9), we obtain the induced voltages shown in 
Table 3. Dividing the induced voltage in each metallic part of 
the cable by the current (imposed on core a) that originated 
them; we obtain the core self-impedance and the mutual 
impedance between the respective conductive part and the 
core (Table 4). Because it is a cable in trefoil formation 
(symmetric configuration), the same values are repeated when 
current is applied only in the core b or c. 
 

TABLE 3 

INDUCED VOLTAGE IN ALL CABLE CONDUCTIVE PARTS  
WHEN CORE A IS FED BY 1150 A / 50 HZ 

Voltage at: 
Modulus 
[mV/km] 

Angle 
[] 

Core a 414.1 -70.5 

Core b 294.7 -60.0 

Core c 294.7 -60.0 

Sheath 1 347.2 -60.4 

Sheath 2 294.7 -60.0 

Sheath 3 294.7 -60.0 

Armor g 285.2 -60.0 
 

TABLE 4 

CORE SELF-IMPEDANCE, MUTUAL BETWEEN CORES, MUTUAL CORE-SHEATH, 
AND MUTUAL CORE-ARMOR 

Impedance 
Resistance 
[m/km] 

Inductance 
[H/km] 

zaa 75.7 1295.9 

zab 0.0 938.1 

zac 0.0 938.1 

za1 2.4 1105.2 

za2 0.0 938.1 

za3 0.0 938.1 

zag 0.0 907.9 
 

One notices a great similarity in the values of mutual 
impedances between cores and between core and sheaths of 
other cores. In other words (zab = zac)  (za2 = za3), as described 



in Section 3.3 of [1]. 
The same process is repeated but now the current is applied 

to sheath 1 and the induced voltages in all the metallic 
elements of the cable are calculated. From this process Table 5 
is formulated for sheath’s self and mutual impedances. 
Finally, the calculation is repeated applying current at the 
armor and calculating the other induced voltages, resulting in 
Table 6. 

As expected, independent of where the current is applied, 
the mutual impedances are always the same as evidenced in 
Tables 4, 5, and 6. 

                    

                       (a)                                                    (b)              
Fig. 9.  (a) Current density [A/mm2] and (b) Magnetic flux [Wb/m] used for 
the calculation of core self and mutual sequence impedances via FEM. 
 

TABLE 5 

CORE-SHEATH MUTUAL IMPEDANCE, SHEATH SELF, 
 AND MUTUAL SHEATH-ARMOR 

Impedance 
Resistance 
[m/km] 

Inductance 
[H/km] 

z1a 2.4 1105.2 

z1b 0.0 938.1 

z1c 0.0 938.1 

z11 1731.3 1104.9 

z12 0.0 938.1 

z13 0.0 938.1 

z1g 0.0 907.9 
 

TABLE 6 

CORE-ARMOR MUTUAL, SHEATH-ARMOR MUTUAL, 
 AND ARMOR SELF-IMPEDANCE 

Impedance 
Resistance 
[m/km] 

Inductance 
[H/km] 

zga 0.00 907.9 

zgb 0.00 907.9 

zgc 0.00 907.9 

zg1 0.00 907.9 

zg2 0.00 907.9 

zg3 0.00 907.9 

zgg 616.8 905.4 
 

If the sheaths are interconnected only at one of the ends 
(whether grounded or not), only the mutual impedances 
between cores influence the phase positive sequence 
impedance, which for the inductance can be obtained 
from (10): 

 1295.9 938.1 0.3578mH kmL      (18) 

The series inductance value of the cable in the 
manufacturer’s catalog [10] is 0.36 mH/km, which validates 
the accuracy of the method used. 

Similarly we obtain the value of the positive sequence 
resistance: 

 75.7 0.0 75.7 m kmR    .  (19) 

The positive sequence impedance are also determined 
when three balanced voltages are applied, displaced 120 
degrees from each other, with the three cores short-circuited 
and the sheaths and armor opened (Fig. 10). Values equal to 
those found in (18) and (19) are obtained. 

               
                        (a)                                                               (b)               
Fig. 10.  (a) Current density [A/mm2] and (b) Magnetic Flux [mWb/m] used 
for the calculation of positive sequence impedance directly via FEM. 
 

Finally, an analytical approach is made by applying of (4) 
and (7).  

Table 7 presents a comparison of the results obtained for 
the positive sequence resistance and inductance between the 
adopted approaches. The error is found by taking the 
reference value provided by the manufacturer. The 
manufacturer did not provide the distributed cable resistance 
value. 

If the sheaths are connected at both ends, the distributed 
positive sequence series resistance and inductance would be: 
R+ = 77.3 m/km and L+ = 357.83 H/km. 
 

TABLE 7 

INDUCTANCE PROVIDED BY THE MANUFACTURER, CALCULATED 

ANALYTICALLY, AND CALCULATED VIA FEM 

 
R+ 

[m/km] 
L+ 

[mH/km] 
L+ Error 

[%] 

Manufacturer --- 0.360 --- 

Analytical 73.2 0.359 0.171 

Numeric 77.3 0.358 0.603 
 

The increase in resistance occurs because, when the sheaths 
are interconnected, a circulation path is created for the 
induced currents. The introduction of an effect in the core 
current distribution is therefore due to the sheath's current 
increasing the proximity effect in the respective core 
compared to the case where the sheaths are not 
interconnected. As the frequency increases, this effect is 
increased [13]. 

Knowing the resistances and inductances (selves and 
mutual) found for all conductive parts of the cable, the 
impedance matrix can be mounted: 

 
core core sheath core armor

core sheath sheath sheath armor

core armor sheath armor armor

z

z

z z z

 

 

 

 
   
  

z z

Z z z   (20) 



where, zcore, zsheath, zcore-sheath, zarmor, zcore-armor, zsheath-armor, are, in 
/m: 

 

75.7 407 295 295

295 75.7 407 295

295 295 75.7 407
core

j j j

j j j

j j j

 
   
  

z   (21) 

 

1731 347 295 295

295 1731 347 295

295 295 1731 347
sheath

j j j

j j j

j j j

 
   
  

z   (22) 

 

2.39 347 295 295

295 2.39 347 295

295 295 2.39 347
core sheath

j j j

j j j

j j j


 
   
  

z  

 (23) 

 

616 285

295

295

armor

core armor

sheath armor

z j

z j

z j




 



  (24) 

B.  Parallel admitance 

Because the insulating material has a high resistivity, the 
branch that represents the parallel conductance can be 
neglected, which can be seen already at 50 Hz by applying 
(11) to the cable under consideration (XLPE insulation), 
where a = 11.4 mm and b = 19.4 mm. 

  12 0.0098 82.184 nS my j    (25) 

The core-sheath capacitance is Im (y12) /  = 261.60 pF/m, 
very close to the value provided by the manufacturer’s catalog 
[10], which is 0.26 F/km. 

The core-sheath capacitance is also calculated through 
finite element technique, obtaining the value of 261.60 pF/m, 
which is exactly the value found by the analytical method 
(also very close to the value provided by the manufacturer). 
Fig. 11 shows the electric field in the region under analysis (as 
well as in sheath-sheath and sheath-armor regions). 
 

 
Fig. 11.  Electric field [V/m] lines when a 1 V potential is applied at the 
sheath 1 and 0 V to all other metallic parts of the cable, to obtain the sheath 
self-capacitance. 
 

Finally, the capacitance sheath-sheath and sheath-armor by 
the finite element method are calculated. Table 8 shows the 
cables’ capacitances values between core and sheath, sheath 
and sheath and sheath and armor, as also the error of 
measurement, considering the value of the manufacturer [10] 
as reference. 

According to (12), the parallel capacitance matrix is: 
 jY C ,  (26) 

where C, in pF/m, is: 
 

 

262 0 0 262 0 0

0 262 0 0 262 0

0 0 262 0 0 262

262 0 0 510 54.4 54.4

0 262 0 54.4 510 54.4

0 0 262 54.4 54.4 510

 
  
 

  
 
 
 

  

C   (27) 

 

TABLE 8 

CAPACITANCE OF THE THREE-CORE CABLE IN STUDY 

Region 
Numeric 
[F/km] 

Analytical 
[F/km] 

Manuf. 
[F/km] 

Error 
[%] 

Core-Sheath 0.2616 0.2616 0.26 0.006 

Sheath-Sheath 0.0544 --- --- --- 

Sheath-Armor 0.1401 --- --- --- 

XI.  CONCLUSIONS 

Space in manufacturer’s cable catalogs is typically 
dedicated only for distributed positive sequence inductance 
and capacitance values at industrial frequency (50 or 60 Hz). 
In [13] it is presented for the same cable of present study, the 
behavior of positive sequence impedances for a frequency 
range from 20 Hz to 20 kHz. 

In the present work, it was considered 50 Hz, with the 
improvement to find the parallel admittance and the specificity 
in relation to mutual coupling between phases, thereby 
allowing to get the sequence impedances. 

Similar to what was done in reference [13], in future works 
the goal will be to evolve the work presented in this paper by 
examining the frequency range from 20 Hz to 20 kHz. We 
will intend: (i) to simulate underground cables with grounded 
ends; and (ii) to apply the same modeling of this paper without 
the application of homogenization techniques (such as those 
applied in the central conductor and sheath in Section III). It is 
expected that through this study, an increase in the accuracy 
of the model’s response, especially at high frequencies, may 
be achieved. Moreover, field measurements have to be made 
for validation. 
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