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Abstract-- In this paper is proposed an efficient and accurate 

algorithmic solution based on a Taylor-Series expansion for 
evaluating the earth return impedance on buried cables. This 
algorithm solution uses the analysis made by Wedepohl and 
Wilcox’s to transform the Pollaczek’s integral into a set of Bessel 
functions plus a definite integral.  The main feature of Bessel 
functions is that they are easy to compute in modern 
mathematical tools such as Matlab. However, the definite 
integral is approximated by an infinite series, since it does not 
have analytical solution. The accuracy and efficiency of the 
proposed method is compared against the numerical integration 
method for a broad ranges and cable configurations through the 
criterion of percent absolute error and 3D graphs. Finally, the 
proposed algorithm is used as a subroutine for cable parameter 
calculation of the inverse Numerical Laplace Transform (NLT) to 
obtain accurate transient responses in the time domain.  

Keywords: Earth-return impedance, Pollazcek’s integral, 
Wedepohl’s integral, Taylor series expansion, buried cables.  

I.  INTRODUCTION 

he accurate calculation of the earth return impedance (ZT) 
parameter is extremely important for modeling 

transmission lines and cables as well as, to perform reliable 
analysis of electromagnetic transients and electromagnetic 
compatibility. The most important expressions to evaluate ZT 
have been first published by Carson in 1926 for aerial lines 
and later by Pollaczek for buried cables and combination of 
buried cables and overhead conductors [1-2]. These 
formulations are represented by a set of infinite integrals 
which were derived from a semi-infinite earth model.  

The calculation of ZT in buried cables is more significant 
than aerial lines. First, the self and mutual earth return 
impedances constitute more than two thirds of the series 
impedance matrix in buried cables. Second, the frequency 
dependent parameter ZT has to be evaluated at many discrete 
points to obtain a good resolution of the transient response in 
the time domain. For instance, a transient analysis caused by 
switching operations in power systems with a typical 
frequency range from 1 Hz ≤ f ≤ 1 MHz may require 1024 
samples of the spectrum. The example of power transmission 
system of buried cables depicted in Fig. 1, with n=3 buried 
cables and m=2 conductors per cable, requires to evaluate ZT 
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at least 1024 x 2/3 x (mn)2 times. This fact is complicated due 
to the accurate evaluation of ZT requires to solve Pollaczek’s 
integral [2-7]. This integral does not have analytic solution 
and its numerical solution through generic integration routines 
in a conventional PC becomes time consuming. This is mainly 
due to the irregular and highly oscillatory behavior of its 
integrand. For decades, most of the research efforts to solve 
Pollaczek’s integral have been focused on solutions based on 
approximated formulas [8-13]. The main drawback with 
approximated formulas is that most of them are valid within 
certain frequency ranges [4].  

 Between 1969 and 1973, Wedepohl and Wilcox published 
a very exhaustive analysis to solve the Pollaczek’s integral [6-
7]. The major contribution of these authors has been the 
decomposition of Pollaczeck’s integral into a set of improper 
integrals plus a definite integral. The improper integrals were 
approximated via Bessel functions. Wedepohl and Wilcox 
derived also an infinite series solution to the definite integral. 
For many years, this series solution had been cumbersome to 
implement due to typographical errors. Cortez R. I. in [14] and 
Uribe-Campos F.A. in [15] have made some efforts to find 
and correct these typographical errors. These authors have 
successfully implemented the original Wedepohl and Wilcox’s 
series solution for a limited frequency range and cable 
configurations. This paper uses the Wedepohl and Wilcox’s 
analysis to derive an efficient and reliable algorithmic solution 
for solving the Pollaczek’s integral. Through this algorithmic 
solution the earth return impedance can be evaluated 
accurately and efficiently for the broad range of applications 
published in the specialized literature. 

II.  EARTH RETURN IMPEDANCE OF BURIED CABLES 

In 1926, Pollaczek published a set of improper integrals to 
evaluate the electromagnetic coupling caused by an infinite 
thin filament in the presence of an imperfect conducting soil 
[2-3].  

 

 
 

Fig. 1: Power transmission system of buried cables. 
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The general formula derived by Pollaczek to evaluate the 
mutual impedance between two buried cables is given by: 
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where  is the angular frequency in rad/s, 0 (0 = 4 x 10-7 
Wb/(Am)) is to the magnetic permeability of the free space,  
is the dummy variable, x is the horizontal distance between 
cables, h1 and h2 are the depths of cables 1 and 2 and 

0soil jp /   is the complex depth with the ground 

resistivity soil. This earth model assumes that 0 = ground and 
the soil is a homogeneous medium whose flat surface divides 
the space into two semi-infinite regions: soil and air.  

The second term of (1a) can be approximated by 
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where K0 is the modified Bessel function of second type and 
order zero. Thus, by replacing (2a) and (2b) in in (1a) ZT 
becomes: 
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where  22
1 2d x h h  

 
is the distance between cables 1 and 

2,  0 00 5 2 1soil soilj j j     p / . / is the complex 

depth,  22
1 2D x h h    is the distance between a real cable 

and the image from the other one. Physical variables h1, h2, x, 
D and d and their geometric relationships are shown in Fig. 2. 
The remaining term J is the Pollaczek’s integral 
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Fig. 2: System layout of buried cables with geometric relationships of physical 
variables. 

 

It also should be noted that expressions (3a) and (3b) 
becomes the self-earth return impedance when x is the 
conductor radius R and h1 = h2.  

In 1973, Wedepohl and Wilcox introduced the following 
analytical decomposition for (3b) [6-7]: 
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and  1 2h h h 2  / .  

The modified Bessel functions K0 and K1 in (3c) evaluate 
improper integrals via convergent series. These Bessel 
functions are easy to compute in modern mathematical tools 
such as Matlab. The second term in (3c) has an algebraic 
expression which does not present computational difficulties. 
The third term Iw in (3c) is named in this paper the Wedephol-
Wilcox´s integral. This integral does not have analytical 
solution but can be easily computed with any numerical 
integration method. In references [6-7], Wedepohl and Wilcox 
have derived an infinite series solution for solving Iw which up 
to date is still awkward to implement for a broad range of 
frequencies and cable configurations. Uribe and Ramirez in 
[16] have implemented the original series solution published 
by Wedepohl and Wilcox as part of a hybrid algorithm to 
solve Iw with an extended factor D/p ≤ 2. Theodoulidis has 
also proposed in [17] the use of the special function 
‘hypergeometric’ which is based on a series expansion for 
solving Iw. The author mentions that a maximum of 20 terms 
are enough to provide a good accuracy, however, the errors 
have not been assessed for all range of parameters. In 
Appendix A are provided the correct terms of the Wedepohl 
and Wilcox’s series solution. Its accuracy has been assessed 
against the numerical integration method for a broad range of 
parameters. 
 Wedepohl and Wilcox have also proposed an 

approximated formula for calculating the earth return 
impedance ZT on buried cables. However, the main 
disadvantage with this formulation is that its application range 
is also limited for low-frequency or by a factor D/p ≤ 1/4. 

III.  SERIES EXPANSION SOLUTION 

The Taylor-series expansion method is derived from the 
Wedepohl-Wilcox’s integral (Iw). For the analysis, let (3d) as 
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By replacing radical terms in (4b) and (4c) by  
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Thus, the infinite series expansion for (4b) and (4c) is 
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The definite integral in (6a) and (6b) can be evaluated 
analytically from the Whittaker M function M(a, b, z): 
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The Whittaker M function can also be defined in terms of a 
confluent hypergeometric function F(n, d, z): 
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By replacing (7c) in (7a) 

      
1

2n 1 Dt
1 2n Dt

2h D

2h D

t e
t e dt 1 2 n 1 Dt 7d

2n 1

p
p

/

/

, , /p
 


  

        
 F

/
/  

where 

  
 

   
k

1 k

k 0 2 n 1 k

Dt
1 2 n 1 Dt 7e

k!

/p
, , /p



 

 
   
 
 


C

F
C

,

,

.

C1,k and C2(n+1),k in (7e) are the ascending factorials which are 
given by 
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By replacing (7d) with definitions (7e), (7f) and (7g) in (6a) 
and (6b) and by truncating the resulting Taylor-series 
expansion at orders N and K, Iw1 and Iw2 become: 
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By evaluating upper and lower limits of (8a) and (8b) 
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The numerical solution for Iw1 and Iw2 can be done efficiently 
by assuming the following considerations: 
a) A loop of length N is used to compute the first summation 

in (9a) and (9b),  
b) Terms e-D/p (D/p)k and  e-D/p(Dt/p)k are defined as constant 

vectors. These expressions contains the frequency 
dependence of the earth return parameter, 

c) Factorial expressions F1 = 4-n(2n)!/((n!)2(2n-1)) in (9a) and        
F2 = 4-n (2n)!/((n!)2) in (9b) are solved recursively to 
overcome overflows when large factorials are computed. 
The code for this recursive algorithm is provided in 
Appendix B. Additionally, the sum of these factorial 
expressions are depicted in Figs. 3a and 3b. It can be 
observed from Fig. 3a that the sum of the first factorial 
expression in (9a) decreases rapidly for N = 10 iterations 
reaching values below to 0.01. As opposite, the sum of the 
first factorial expression in (9b) decreases slowly and thus, 
larger values of N are required to reach values below to 
0.01. However, the following criterion can be used to 
truncate the series expansion in (9b) for small values of N 
when t < 1: 
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d) The second summation in (9a) and (9b) with the factorial 
term F3= (2n)!/(2n+k+1)! is also solved recursively in a 
vectorized manner as described in Appendix B. The plot of 
this summation is depicted in Fig. 2c for D/p=1, K=20, 
and t=0. It can be observed that the sum reaches values 
below to 0.01 for N ≤ 20 iterations. 

 
Fig. 3: Solution of factorial expressions for different values of n. a) 

Factorial F1, b) Factorial F2 and c) Factorial F3. 



IV.  CONVERGENCE, ACCURACY AND STABILITY 

The series expansion method for Iw, described in the 
previous section as function of physical and electrical 
variables (h, x, D, ,  and p), is now evaluated for a broad 
range of parameters to test its accuracy.  For doing this, the 
next dimensionless variables are introduced 
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D t 2h D and 10a

2h
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Dimensionless variables relate physical and electrical 
variables. Table I provides the range of values for physical and 
electrical variables [18]. These values are used to establish the 
range of most practical interest for dimensionless parameters 
(10a) which are provided in Table II.  

The series expansion is applied to solve Iw for values 
D/p≤ 60 and 0 10-3 ≤  ≤ 103. For this test, the values used 
for  = 0.05 S/m and the frequency range has been uniformly 
sampled from 1 Hz to 1 MHz. Figs. 4a and 4b provide the 
results in the form of 3D graphs for the real and imaginary 
components for Iw. The figures were generated by solving Iw 
1300 times with N = 20 iterations. The computational task 
required for doing this task by an Intel Core™ i7-3770 CPU 
@ 3.40 GHz running MATLAB V. 7.14 was less than 1 s. 

The numerical quadrature Gauss-Lobatto integration 
method “quadl” is also applied to solve Iw for the same values 
described above. The results obtained with the numerical 
integration are compared against the series algorithm through 
the absolute percent error (), 

   w series w,integration100 10b   ,I I  

Absolute percent errors obtained from the broad range 
simulation are depicted in Fig. 4c. It can be observed that 
magnitudes of errors are always below to 0.15%.  

Table III provides information regarding to the number 
iterations, convergence and stability of the proposed series 
solution. The results provided in this table were calculated by 
using a factor D/p = 3 and K = 150 for computing the second 
sum in (9a) and (9b). The fourth column of Table IV provides 
the maximum errors (max) for different number of iterations. It 
is observed that  decreases rapidly as N increase. So that, the 
convergence and stability for the series solution is guaranteed 
when  tends to zero. 

The criterion to truncate the series at order N is  

w series ,| I | .  

 
TABLE I 

PHYSICAL VARIABLES 

0.1 ≤   h   ≤ 102 [m] 

2 ≤      ≤ 2 x 106 [rad/s] 

10-4 ≤      ≤ 1 [S/m] 
10-2 ≤   x   ≤ 103 [m] 

 
TABLE II 

DIMENSIONLESS PARAMETERS 

10‐5	 ≤	D/p		≤	 103	
10-3 ≤      ≤ 103 

 
By assuming  = 0.015, the number of iterations required to 

truncate the Taylor-series expansion is N = 20 iterations. This 

is the practical limit recommended for the authors to perform 
electromagnetic transient studies. 
 

 
a) 

 
b) 

 
c) 

Fig. 4.  IW solution for  as shown in Table II and D/p ≤ 60. a) Real part of 
Iw, b) Imaginary part of Iw and c) Absolute percent error. 

 
TABLE III 

ANALYSIS OF CONVERGENCE AND STABILITY FOR IW, SERIES 

# ITER  
N 

FACTOR 
D/p 

FACTOR 
K 

MAX. ERROR 
(%) 

1 3 150 0.9312 

3 3 150 0.2417 
5 3 150 0.1183 
10 3 150 0.04325 
15 3 150 0.02377 

20 3 150 0.01500 
30 3 150 0.00848 
40 3 150 0.00552 

 
 
 
 
 
 



IV. STUDY CASES 
The self and mutual earth return impedances (ZT) are 
evaluated with three different methods: a) the Taylor-series 
expansion method proposed in this paper, b) the numerical 
integration method “quadl” [19], and c) the closed formula 
published by Saad, Gaba and Giroux [9]. The validation test 
consists in to compare the frequency responses for ZT obtained 
with the aforementioned methods through the absolute percent 
error. It should be pointed out that numerical integration 
method is applied for both, the Pollaczek´s integral (3b) and 
the Wedepohl´s integral (4a). The solution of (3c) with the 
numerical integration is considered the reference case for 
doing these comparisons. 

A) Typical case of a power system of buried cables 
A power system of three buried cables such as the one 

depicted in Fig. 1 is used as to perform the validation test. The 
physical variables for this system are shown in the transversal 
layout of Fig. 5. This example corresponds to the benchmark 
case published by Wedepohl and Wilcox in 1973. 

Figs. 6 and 7 show plots of self and mutual impedances 
(ZT) in terms of their magnitudes in per unit length (Ω/m) and 
angles in degrees. These frequency responses were calculated 
with N=20 iterations for the series algorithm and a tolerance 
of 10e-6 for the numerical integration. The accuracy of the 
results was measured through the criterion of absolute percent 
error. By comparing absolute percent errors in Figs. 6 and 7 
one can say that Saad-Gaba-Giroux formula gives significant 
errors greater than 1% at high frequency. As opposite, the 
series expansion and the numerical integration give accurate 
results, smaller than 0.1 %, over all the entire frequency range. 
The numerical integration is slightly more accurate than the 
series algorithm. This is due to the series algorithm is 
truncated at N = 20 iterations.  

B) Case of AC interference on oil and gas pipelines 

There are practical cases in which oil, gas and water pipelines 
share the same right of way with power transmission system 
of aerial lines and buried cables. These cases are the main of 
concern for public utilities due to high voltage in power lines 
and cables can cause AC interference on these pipelines. For 
instance, during normal operation conditions power 
transmission systems induce voltages and currents between 
their conductors and any other surrounding conducting 
material in the vicinity. The magnitudes of induced voltages 
and currents can be greater during abnormal conditions caused 
by strike lighting and faults. Part of this energy can be 
captured by the pipelines and transported along its entire 
length to the gas stations or water supply valves where can 
result in an electrical hazard for people touching the pipelines 
or metallic structures connected to the pipeline or simply 
standing nearby. Furthermore, the AC interference can also 
result in damage to the pipeline and its coating. To predict and 
mitigate these conditions, it is necessary to count with tools 
for the accurate evaluation of earth return impedance. 
 

 

 
Fig. 5: System layout of buried cables.  

 
Fig. 6: Self ZT for a buried conductor. a) Magnitude ZT (Ω/m), b) Angle of 

ZT (Deg.) and c) Absolute percent errors. 

 
Fig. 7: Mutual ZT for a buried conductor. a) Magnitude ZT (Ω/m), b) Angle 

of ZT (Deg.) and c) Absolute percent errors. 



Let us consider the power transmission of buried cables 
shown in Fig. 8 which is electromagnetically coupled to a 
petroleum/gas pipeline. The ground resistivity is 20 -m. For 
the calculation of mutual electromagnetic couplings between 
conductors 3 and 4 consider a horizontal distance of 30 meters 
and a depth of 0.762 m for both conductors. 

Fig. 9 shows the self and mutual impedance (ZT) plots as 
function of frequency in terms of its magnitude in per unit 
length (Ω/m) and angle in degrees. For this case, the frequency 
range has been logarithmically spaced from 10 Hz to 1 MHz 
by using 100 points per decade. Frequency responses for ZT 
have been calculated with the series solution method proposed 
in this paper, the Gauss-Lobatto numerical integration and the 
Saad-Gaba-Giroux formulation [9]. By comparing the three 
methods used one can say that Saad-Gaba-Giroux gives 
significant errors at high frequency. In contrast, the Taylor-
series expansion method and the Gauss-Lobatto numerical 
integration give the same accuracy over all the entire 
frequency range. However, the main advantage of the series 
solution regarding to Gauss-Lobatto is its low computational 
demanding.  Table V provides the computational time required 
for both methods with an Intel Core™ i7-3770 CPU @ 3.40 
GHz running MATLAB V. 7.14. It can be observed that the 
series solution is faster than the numerical integration method.  

 
Fig. 8: Transversal layout with an oil gas pipe. 

 
Fig.9: Mutual ZT for a buried conductor. a) Magnitude ZT (Ω/m), b) Angle. 

of ZT (Deg.) and c) Absolute percent errors. 
 
 

TABLE IV 
COMPUTATIONAL TIME 

Method  Time (s) 

Series N =20 iterations  0.0781 
Gauss-Lobatto Tolerance = 10-9 0.9219 

V.  TRANSIENT STUDY 

The inverse Numerical Laplace Transform (NLT) technique 
based on the frequency domain is used as reference to 
calculate the transient response of an open circuit test [20]. 
The Taylor-Series expansion method and the numerical 
integration have been incorporated into the CABLE toolbox of 
the NLT technique for evaluating the frequency-dependent 
parameter ZT. The open circuit transient response is calculated 
with the real-time platform RSCAD/RTDS. The CABLE 
program has been adjusted to evaluate ZT with the numerical 
integration and the transient calculation with the full 
frequency dependent cable model. The aim of this section is to 
compare the transient responses obtained with NLT and the 
commercial real-time platform RSCAD/RTDS. 

Consider the three-phase underground power system 
benchmark proposed by Wedepohl and Wilcox in 1973. The 
data for this system is provided in Fig. 5. Each underground 
cable is made up by a core and a screen with an insulator 
between them. The core is the main electric conductor while 
the sheath is its mechanical protection.  

A) Open circuit test 
A unit step voltage of 1 p.u. is applied at t = 0 s to the core 

of cable 1 as shown in Fig. 10. At the sending end, cores of 
cables 2 and 3 are left in open circuit while sheaths are short-
circuited. At the receiving end, all conductors are left open. 
The time step to perform this simulation test is 10 µs due to it 
is the minimum allowed by RSCAD/RTDS with the 
frequency-dependent model. The NLT technique uses an 
observation time of 3 ms with N = 1000 samples to match the 
simulation time-step.   

The voltage transient response at the receiving end to the 
energized core of cable 1 is depicted in Fig. 11a while induced 
voltages for cores 2 and 3, and sheaths 1, 2 and 3 are depicted 
in Fig. 11b. The open circuit transient responses obtained 
through the inverse NLT technique with the Taylor-Series 
expansion and the numerical integration match exactly the 
same behavior. Absolute errors among these waveforms are 
less than 10-4. However, voltage waveforms captured from the 
real-time simulation in RTDS presents some small 
discrepancies with the NLT technique. These small 
differences are probably due to larger time steps do not 
represent the full frequency dependence of parameters. For 
instance, a time-step of 10 µs corresponds to an effective 
bandwidth of 15 kHz. To have a good resolution of the 
transient response in the time domain it is necessary to 
perform the simulation with time-steps smaller than 10 µs.  

 



 
Fig. 10:  Cable system connection diagram. 

 

 
Fig. 11:  Voltage transient responses at the receiving end, a) Energized core of 
cable 1, b) Induced conductors at cores 2, 3 and sheaths 1, 2, 3. 

VI.  CONCLUSIONS 

A numerical solution method based on a Taylor-series 
expansion has been presented to evaluate the earth return 
impedance in buried cables. It has been demonstrated that this 
method provides enough accuracy for the broad range of 
application cases published in the specialized literature. Its 
execution in a conventional PC is always faster than the 
numerical integration method. This reliable method can be 
used to be incorporated in CABLE routines of electromagnetic 
transients programs such as the NLT technique and the real-
time platform RSCAD/RTDS.  

VII.  APPENDIX A 

The Wedepohl and Wilcox’s series solution can be split up 
into the following four types of terms: 
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Fig. 12 shows the absolute percent errors obtained from a 
broad range simulation of A.1. It can be observed through this 
simulation that the application range of the Wedepohl and 
Wilcox’s series solution is limited to small values of D/p.  
Uribe and Ramirez in [16] have used a factor D/p ≤ 2.  

 
Fig. 12: Absolute percent errors for a broad range simulation of the Wedepohl 

and Wilcox’s series solution. 

VIII.  APPENDIX B  

The Matlab® code used in this paper to compute the series 
expansion method for both Iw1 and Iw2 is described below.  
 
function [IW IW1 IW2] = series(N,K,DP,t) 
 
% Inputs: 
% N= Upper bound for computing the first summation; 
% K= Upper bound for computing the second summation; 
% DP= Constant defined in (10a); 
% t= Dimensionless variable t=2h/D; 



 
% Outputs: 
% IW  = Numerical solution of (4a); 
% IW1 = Numerical solution of (4b); 
% IW2 = Numerical solution of (4c); 
 
% Initialization: 
IW=0; IW1=0; IW2=0; 
% Constants: 
DPT=DP*(t); 
% Vectors: 
CTE1= exp(-DP).*(DP).^(0:K); 
CTE2= exp(-DPT).*(DPT).^(0:K); 
% Constant Vector: 
FA=1./factorial(0:K+1); 
 
% Loop: 
for n=0:N 
    if n==0 
       alfa= K; % Constant 
       F2=1;F1=-F2;   % Constant 
    else 
       a0= a0+1; 
       a1=FA(end)/a0; 
       a2=a1/(alfa+1); 
       FA=((2*n-1)*(2*n))*([FA(3:end) a1 a2]); 
       if n==1 
               F2=2*4^(-n);F1=F2; 
       else 

F2=(2*n-1)*F2/(2*n); 
  F1=F2/(2*n-1); 
       end 
    end 
    LS  = CTE1; 
    LI  = t^(2*n+1)*CTE2; 
    F3 = sum(FA.*(LS-LI)); 
    IW1 = IW1 – F3*F1; 
    IW2 = IW2 + F2; 
end 
    if t<1 

WS2 = WS2+FAC/exp(DP);  % Eq. (9c) 
    end 
IW = -2hx(2*IW2-IW1)/D2;   % Eq. (4a) 
 

 The numerical computation of (4a) can also be illustrated as 
shown in the flowchart of Fig. 13. 
 

 
 

Fig. 13: Flowchart to compute the series expansions Iw1 and Iw2. 
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