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Abstract--This paper presents time-domain simulation results 

obtained with the frequency-dependence fdLine and ULM line 
models in the EMTP for a variety of asymmetrical line 
configurations, including single-circuit, double-circuit and 
parallel lines. The results are compared with a reference 
frequency-domain solution based on the Laplace transform. The 
comparisons include open and short circuit conditions during the 
transient and steady-state periods. As observed from the 
simulations, both fdLine and ULM follow very closely the results 
obtained with the Laplace solution. This is in contrast with the 
traditional belief that fdLine does not give accurate results for 
asymmetrical line configurations. 
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I.  INTRODUCTION 
HERE are two main approaches to solving for transient 
conditions in frequency-dependent transmission lines: 

Time-domain and Frequency-domain. 
The frequency-domain solution describes the transmission 

line one frequency at the time over a frequency range, and 
transforms the frequency response into a time response using 
time-frequency transformations such as the Discrete Laplace 
Transform. The frequency-domain solution makes no 
approximations regarding diagonalizing transformation 
matrices and is, therefore, a very good reference when 
comparing time-domain frequency-dependent line models [1]. 

On the other hand, the solution of a complete system, in 
which a large variety of conditions are simulated, is more 
easily formulated in the time-domain. In direct time-domain 
simulations, every element of an electrical network is 
described by a set of differential equations. In order to obtain 
the time-domain models of these elements, the corresponding 
differential equations are solved (integrated) between discrete 
time intervals (e.g. trapezoidal rule in the EMTP). Transmis-
sion lines, however, are one of the most difficult elements to 
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be modelled in time-domain transient simulations, due to the 
complexity of the frequency dependence functions involved. 
As a result, a series of factors such as time-step, numerical 
stability and accuracy become major considerations. In the 
pioneering work of [2], an efficient frequency-dependent line 
model was formulated by fitting the characteristic admittance 
and propagation wave functions with a low-order rational 
function approximation. This model was extended in [3] for 
high-order accurate approximations of the line functions while 
guaranteeing numerical stability by applying minimum-phase 
shift constraints. 

The fdLine model of [3] has been widely used in EMTP 
programs (e.g. [4]-[7]) and is well-known for its efficiency 
and reliability. The rational function approximations in fdLine 
are based on Bode's Asymptotic Fitting (BAF) of the 
magnitude of the line functions using only real negative poles 
and zeros. This guarantees minimum-phase-shit functions and, 
therefore, causal and stable solutions. The original version of 
fdLine was implemented in 1981-1983 in the Bonneville 
Power Administration (BPA) EMTP [7]. This original BPA 
version was improved in the DCG/EPRI version developed in 
1984-1986 [8]. Some of the specific improvements included: 
higher dynamics in the very low frequency region that solved 
encountered problems for very short lines, improved BAF 
algorithms that improved the overall accuracy of the fitting, 
and automatic error checking for short- and open-circuit 
conditions to optimize the single-frequency diagonalizing 
matrices used in fdLine. Even though fdLine has been widely 
used, there has been the belief that because it uses a single real 
transformation matrix to convert between modal and phase 
quantities, the model may not be accurate enough for strongly 
asymmetrical line configurations. 

The Universal Line Model (ULM) was introduced in 1999 
[9] to improve the accuracy of fdLine by using complex poles 
and zeros in the rational-function approximations and by not 
limiting the transformation matrices to a single frequency but 
fitting these matrices over the frequency range of the model 
using rational function approximations of the idempotent 
coefficients. By introducing these more detailed modelling 
functions, ULM relaxes the fitting requirements by allowing 
non-minimum phase rational functions. As a result both the 
real and imaginary parts of the line propagation and 
characteristic admittance functions need to be fitted. The 
frequency-dependent transformation matrices are also fitted in 
the form of idempotents coefficients [10]. 

As a result of the additional complexity of the model, ULM 
requires additional computational time which is an important 
consideration in real time simulators. In addition, the 
numerical stability of the model is harder to guarantee and in 
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many cases special considerations need to be made to 
guarantee passivity. Even though fdLine is simple, does not 
require passivity considerations, and has been implemented in 
real time simulators the concern has remained of whether the 
model is accurate enough under strongly asymmetrical line 
configurations. Many of the arguments for this conclusion 
have been based on using a single transformation matrix 
versus fitting the transformation matrix functions. The results 
presented in this paper seem to indicate that fdLine has a 
similar accuracy to ULM when compared to a reference 
Laplace solution under asymmetrical overhead line configura-
tions. 

In some regions of the modelled transients, ULM gave 
slightly better results than fdLine (even though both models 
were very accurate), while in some other regions fdLine gave 
slightly better results than ULM (even though both models 
were very accurate). Six different line configurations were 
tested in this study. The MicroTran software of [4] (v3.25) 
was used for the simulations using fdLine, while the PSCAD 
software of [5] (v4.5.2.0) was used for the simulations running 
the ULM model. MATLAB was used for the Laplace solution. 
Even though particular software packages were used to run 
these tests, the cases are described with enough detail so that 
they can be run using other EMTP software implementations. 

II.  CASE STUDIES 
Six line configurations (Figs. 1 to 6) were tested under 

asymmetrical conditions as follows: 
● Test 1: Single-phase line. 
● Test 2: 3-phase single-circuit horizontal line [11].  
● Test 3: 3-phase single-circuit vertical line [12]. 
● Test 4: 3-phase single-circuit delta line [12]. 
● Test 5: 3-phase double-circuit one-tower delta line [11]. 
● Test 6: 3-phase double-circuit two-tower horizontal line 

[13]. 
 
To compare the result with the Laplace solution, an M-file 

was written in MATLAB which directly maps the frequency 
response of the test cases to the time-domain [1]. To ensure 
the accuracy of the results obtained with the Laplace solution, 
a time simulation window with 220 samples was chosen. 

In the curve-fitting process of all the simulations, the 
maximum number of poles was set to 35, the frequency range 
considered was from 10-2 to 108 Hz, the constant/real 
transformation matrix for fdLine (Qreal) was set at 1 kHz, and 
the diagonal matrix of external insulator conductance (Gext) 
was chosen as a typical value of 3×10-8 (S/km) [14]. 

In the test cases, the transmission lines are connected to a 
balanced three-phase cosine source (Fig. 7) and the peak value 
of phase-a is applied at t = 0. The equivalent source 
impedance corresponds to the impedance of the generator plus 
its step-up transformer. The conductors at the receiving-end of 
the line are either shorted or open (connected to the ground 
with a resistance of 10-6 Ω or 106 Ω, respectively.). The time 
steps of the EMTP simulation are indicated in the captions 
showing the line geometry. To guarantee the accuracy of the 
time-domain simulation, these time steps are taken to be 20 
times smaller than the travelling time at the speed of light. 

Figs. 1 to 6 show the line geometries and the terminal 
conditions of the conductors (open or shorted). Voltages and 

currents during these tests are plotted in Figs. 8 to 39. 
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Fig. 1. Single-phase transmission line (open and shorted). (Δt = 5 µs) 
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Fig. 2. Three-phase single-circuit horizontal transmission line. (Δt = 40 µs) 
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Fig. 3. Three-phase single-circuit vertical transmission line. (Δt = 50 µs) 
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Fig. 4: Three-phase single-circuit delta transmission line. (Δt = 80 µs) 
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Fig. 5: Three-phase double-circuit one-tower delta transmission line. (Δt = 16 
µs) 
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Fig. 6: Three-phase double-circuit two-tower horizontal transmission line. (Δt 
= 20 µs) 
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III.  COMPARISON OF SIMULATION RESULTS 
The simulation results of the line energization tests, 

obtained with the Laplace, fdLine, and ULM solutions are 
shown using “Black”, “Green”, and “Red” color codes, 
respectively. 

Due to the closeness of the results presented in each plot, 
the differences are best viewed using the glass magnifier in a 
pdf viewer. The simulations are shown in two different time 
spans, a longer time span to show the evolution into steady-
state, and a shorter time span to focus on the initial transient 
region. 

Due to space limitations, only the phases with the worst 
results are shown. The simulations were run at the Δt's shown 
in the captions to the line configuration, Figs. 1 to 6. 

Figs. 8 to 39 show the simulation results for open-circuit 
voltages and short-circuit currents for the following cases: 

A) A single-phase line (Figs 8 and 9), 
B) Three-phase single-circuit lines (Figs. 10 to 27), 
C) Three-phase double-circuit lines in the same tower 

(Figs. 28 to 33), 
D) Three-phase double-circuit lines in separate towers 

(Figs. 34 to 39), 
E) Steady-State Solutions (Table 1). 

A) Single-Phase Line 
The results for the single-phase test are shown in Figs. 8 

and 9. These results show, in the absence of transformation 
matrices needed in the multiphase cases, fdLine and ULM 
match the Laplace solution perfectly, thus, verifying the 
general validity of the models. 

 

 
Fig. 8. Voltage at receiving-end of open single-phase line. 
 

 
Fig. 9. Current at receiving-end of shorted single-phase line. 
 

B) Three-Phase Single-Circuit Lines 
The results for the Single-Circuit line tests are shown in 

Figs. 10 to 27. For the horizontal line of Fig. 2, the open-
circuit voltages at the receiving-end of the line are shown in 
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Figs. 10 to 12. These results show that the solutions given by 
fdLine and ULM are perfectly matched, and they follow the 
Laplace solution very well (except in the jagged points of the 
curves in which the Laplace solution deviates slightly). Also 
for the short-circuit currents, Figs. 13 to 15 show that the 
results of fdLine and ULM for the horizontal line are quite in 
agreement with the Laplace solution. 

For the vertical line of Fig. 3, the open-circuit voltages at 
the receiving-end of the line are shown in Figs. 16 to 18. 
These results show that fdLine follows the Laplace solution 
closer than ULM. The deviation of the open-circuit voltages at 
the peak points and the slight phase shift drift of ULM can be 
more clearly observed in Figs. 17 and 18. For the short-circuit 
currents, Figs. 19 to 21 show that ULM is closer to the 
Laplace solution than fdLine. Fig. 20 shows that the peak 
value of short-circuit current of fdLine is about 5% below the 
peak value of the Laplace solution. 

For the delta line of Fig. 4, the open-circuit voltages at the 
receiving-end of the line are shown in Figs. 22 to 24. These 
results show that fdLine and ULM follow the Laplace solution 
well, but not as well as for the horizontal and vertical lines 
tests. Fig. 22 shows that the peak values of fdLine get closer to 
the Laplace solution than the ULM values as time advances. 
However, there is no perfect match between the three 
solutions at the peak values of the few initial cycles. For the 
short-circuit currents, Figs. 25 to 27 show that the short circuit 
currents of fdLine and ULM match Laplace solution very 
well. 

 

 
Fig. 10. Voltage at open conductor 3 of horizontal line. 
 

 
Fig. 11. Detail of voltage at open conductor 3 of horizontal line. 
 

 
Fig. 12. Further detail of voltage at open conductor 3 of horizontal line. 
 

 
Fig. 13. Current at shorted conductor 1 of horizontal line. 

 
Fig. 14. Detail of current at shorted conductor 1 of horizontal line. 
 

 
Fig. 15. Further detail of current at shorted conductor 1 of horizontal line. 
 

 
Fig. 16. Voltage at open conductor 2 of vertical line. 
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Fig. 17. Detail of voltage at open conductor 2 of vertical line. 
 

 
Fig. 18. Further detail of voltage at open conductor 2 of vertical line. 
 

 
Fig. 19. Current at shorted conductor 3 of vertical line. 
 

 
Fig. 20. Detail of current at shorted conductor 3 of vertical line. 
 

 
Fig. 21. Further detail of current at shorted conductor 3 of vertical line. 
 

 
Fig. 22. Voltage at open conductor 1 of delta line. 
 

 
Fig. 23. Detail of voltage at open conductor 1 of delta line. 
 

Fig. 24. Further detail of voltage at open conductor 1 of delta line. 
 

 
Fig. 25. Current at shorted conductor 3 of delta line. 
 

 
Fig. 26. Detail of current at shorted conductor 3 of delta line. 
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Fig. 27. Further detail of current at shorted conductor 3 of delta line. 
 

C) Three-Phase Double-Circuit Line in the Same Tower 
The fdLine and ULM models performed very accurately 

for the single-phase line and the three-phase single-circuit 
lines. As expected, however, larger differences between time-
domain (fdLine and ULM) and frequency-domain (Laplace) 
simulations were observed for the double-circuit same-tower 
and double-circuit separate-tower tests. The results of these 
tests are shown in Figs. 28 to 33. 

For the double-circuit delta lines of Fig. 5, the open-circuit 
voltages at the receiving-end of the line are shown in Figs. 28 
to 30. As seen in Fig. 29, the fdLine and ULM solutions are 
very close to each other and follow the Laplace solution quite 
well in the initial few cycles and in the steady state solutions. 
However, as observed in Fig. 28, time-domain solutions 
deviate more from the Laplace solution in the time span 
between 0.02 to 0.1 seconds. 

For the short-circuit currents, Figs. 31 to 33 show that both 
fdLine and ULM match the Laplace solution perfectly. 

The results of these tests show that, contrary to common 
belief, fdLine gives very accurate results for the double-circuit 
line. These results are very similar to the results obtained with 
ULM. 

 

 
Fig. 28. Voltage at open conductor 1 of double-circuit one-tower delta line. 
 

 
Fig. 29. Detail of voltage at open conductor 1 of double-circuit one-tower 
delta line. 

 
Fig. 30. Further detail of voltage at open conductor 1 of double-circuit one-
tower delta line. 
 

 
Fig. 31. Current at shorted conductor 6 of double-circuit one-tower delta line. 
 

 
Fig. 32. Detail of current at shorted conductor 6 of double-circuit one-tower 
delta line. 
 

 
Fig. 33. Further detail of current at shorted conductor 6 of double-circuit one-
tower delta line. 

D) Three-Phase Double-Circuit Line in Separate Towers 
Figs. 34 to 39 present the results obtained for the two 

parallel horizontal lines of Fig. 6 mounted in two separate 
towers. 

For the open-circuit voltages, Figs. 34 to 36 show that the 
solutions given by fdLine and ULM are closer to the Laplace 
solution than they were for the double-circuit in the same 
tower case. As observed in Figs. 35 and 36, fdLine is slightly 
closer to the Laplace solution than ULM, particularly at the 
peak points. 
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For the short-circuit currents, Figs. 37 to 39 show that the 
results are very similar for both fdLine and ULM. However, 
both results present a slight vertical shift with respect to the 
Laplace solution. 

It can be noted that for circuits in separate towers, there is 
less coupling between circuits than when they are are in the 
same tower. This might explain the slight edge of fdLine 
versus ULM in this case. Since ULM uses a more complex 
model for frequency dependent coupling (frequency 
dependent transformation matrices), it might be the case that, 
for numerical reasons, a simpler model, like fdLine that uses a 
constant transformation matrix has less numerical difficulties 
and provides better results for weakly coupled cases. This 
does not mean that fdLine only works well for weakly coupled 
cases, since it also gave very good results, comparable with 
those of ULM, for the strongly coupled cases when both 
circuits were in the same tower. 

 
Fig. 34. Voltage at open conductor 2 of two parallel horizontal lines. 

 
Fig. 35. Detail of voltage at open conductor 2 of two parallel horizontal lines. 
 

 
Fig. 36. Further detail of voltage at open conductor 2 of two parallel 
horizontal lines 

E) Steady-State Solutions 
Table I below shows the steady state solutions obtained 

running Laplace, fdLine, and ULM in the different test cases 
after the initial transient settles. 
 

 
Fig. 37. Current at shorted conductor 1 of two parallel horizontal lines. 
 

 
Fig. 38. Detail of current at shorted conductor 1 of two parallel horizontal 
lines. 
 

 
Fig. 39. Further detail of current at shorted conductor 1 of two parallel 
horizontal lines. 

As it can be observed in Table I, the maximum error for the 
steady-state voltages was 1.16% for fdLine and 1.25% for 
ULM. The maximum error for the steady-state currents was 
1.96% for fdLine and 2.59% for ULM. Considering the 
complexity of frequency-dependent line modelling, these are 
very good results for both fdLine and ULM. 

 
TABLE I 

COMPARISON OF STEADY STATE VALUES FOR THE DIFFERENT SOLUTIONS 

# kV/kA Laplace fdLine ULM 

1 
Voc 167.81 167.9 0.05% 167.9 0.05% 
Isc 1.155 1.159 0.36% 1.163 0.69% 

2 
V3 247.7 246.9 0.32% 248.0 0.12% 
I1 0.912 0.916 0.44% 0.919 0.77% 

3 
V2 397.5 396.9 0.15% 399.4 0.48% 
I3 0.970 0.951 1.95% 0.976 0.62% 

4 
V1 631.5 638.8 1.16% 633.6 0.33% 
I3 1.078 1.071 0.65% 1.072 0.56% 

5 V1 100.6 101.1 0.50% 100.5 0.10% 
I6 0.809 0.803 0.74% 0.820 1.36% 

6 V2 200.4 202.2 0.90% 197.9 1.25% 
I1 1.738 1.772 1.96% 1.783 2.59% 
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IV.  CONCLUSIONS 
In this paper, six different line configurations were simulat-

ed under asymmetrical short-circuit conditions using two well-
known time-domain frequency-dependent line models: fdLine 
and ULM. The results were assessed using a frequency-
domain Laplace solution. The Laplace solution is taken as 
reference because it does not use any approximation with 
regards to the modelling of frequency-dependence. 

Three cases of three-phase lines were considered: single-
circuit lines, double-circuit lines in the same tower, and 
double-circuit lines in separate towers. Open-circuit voltages 
and short-circuit currents were compared. For all cases, the 
fdLine model gave similar results to the ULM model and both 
models gave good results when compared to the reference 
Laplace solution. These results indicate that, contrary to 
traditional belief, a constant transformation matrix model like 
fdLine is capable of representing multi-circuit asymmetrical 
line configurations. In view of these results, we believe that 
more research is needed to understand the role of frequency-
dependent transformation matrices in overhead transmission 
line modelling. 

Even though, fdLine and ULM gave very accurate results 
compared to the Laplace solutions, there are still some 
discrepancies between time-domain and frequency-domain 
simulations that, in our opinion, are not yet clearly understood. 
The largest errors in the tests were observed in the voltages for 
the three-phase single-circuit delta line of Fig. 4 and in the 
three-phase double-circuit one-tower delta line of Fig. 5. The 
largest errors for the currents were observed for the three-
phase double-circuit two-tower horizontal lines of Fig. 6. It 
was also observed that the open-circuit voltages of fdLine 
were closer to the Laplace solution than ULM in the tests of 
the single-circuit vertical line and double-circuit separate-
tower horizontal lines. Alternatively, the short-circuit currents 
of ULM were closer to the Laplace solution than those of 
fdLine in the single-circuit vertical line test. 

Overall, the waveforms of the short-circuit currents of both 
fdLine and ULM followed those of the Laplace solution closer 
than the waveforms of the open-circuit voltages, for the same 
line configuration. 

Analysis of the steady-state period confirmed the very good 
performance of both fdLine and ULM. The maximum error 
was 1.25% (ULM) in the open-circuit voltages, and 2.59% 
(ULM) in the short-circuit currents for the test of two parallel 
horizontal lines in two separate towers. 

Overall, fdLine and ULM performed extremely well in 
simulating asymmetrical overhead line configurations, with 
maximum errors that are very small compared to the 
uncertainties in the calculation of the line parameters, the 
uncertainties in the ground resistivity, and the errors inherent 
to formulating closed-form solutions for transcendental line 
functions. 
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