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Abstract—This paper provides insight into choosing the most
correct transformation matrices for the estimation of transmis-
sion line parameters from PMU measurements at both ends of a
transmission line. The paper continues the study on a method of
estimating the parameters of multi-conductor transmission lines
by applying modal transformations that decouple the measured
voltage and current phasors. For transposed lines, the unique
preferred transformation matrix is derived, which results in
the smallest errors in case of deviations from ideal conditions.
Moreover, it is shown that for untransposed transmission lines the
modal transformation matrices can be calculated once (from line
design data) and assumed constant in PMU-based line parameter
estimation applications.

Keywords: Transmission line measurements, Transmission line
matrix methods, Modal analysis, Phasor measurement units

I. INTRODUCTION

THE increasing installation of phasor measurement units
(PMU) is enabling simultaneous voltage and current

phasor measurements, often at both ends of a transmission line.
This has led to the suggestion of various applications enabling
the online monitoring of transmission line parameters. Such
applications are based on common line models; however, the
equations are solved for a reverse problem. When usually the
parameters of the line model are known, then in this case,
the parameters themselves are estimated from the inputs and
outputs of the model.

Transmission lines can be modelled with different degrees
of approximation. Likewise, the calculation of line parameters
from phasor measurements can be based on models with
different accuracy. Most of the approaches have been based
on modelling the line as independent conductors, disregard-
ing any coupling between phases [1]–[3]. Kurokawa et al.
have suggested to solve the problem by modal decoupling,
avoiding such a simplification [4], [5]. In this case, a linear
transformation is made to transform the phase quantities into a
modal domain where they are uncoupled. After solving the line
equations in the modal domain, the parameters in the phase
domain can be estimated after an inverse transformation [6].
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In general, the transformation matrix, which is used in
modal decoupling, is not known as it is itself dependent
on line parameters. However, for an ideally transposed line,
there exists an infinite set of suitable transformation matrices,
independent of any line parameters. In [4], a variation of the
Clarke transformation matrix (which coincides with one of the
correct transformation matrices of ideally transposed lines) is
suggested as the unique solution for a simplified estimation
procedure. As a part of this paper, it is shown why this is, in
fact, the preferred choice for realistic, imperfectly transposed
lines.

In order to improve the accuracy of this method in the
untransposed case, it is proposed to compute the transfor-
mation matrices of untransposed lines from line design data
(geometry, conductor resistance, etc.) under known conditions.
It is verified that environment-dependent changes affect the
modal transformation matrices negligibly, and thus, they can
be assumed constant for the line in such applications. This
way, the conventional estimates of line parameters are used
to find suitable transformation matrices, which can then be
applied to estimate line parameters from measurements under
changing conditions. This approach is more accurate than
simply using the transformation matrix of transposed lines.

Improved knowledge about the modal transformation ma-
trices can be used in estimating line parameters from phasor
measurements, e.g. in applications based on PMUs. Such
applications enable the parameters of the line model to be
monitored in real-time. Contrary to common solutions, the
studied approach models the lines more accurately and the
resulting estimates include mutual quantities between phases.
The measured parameters can be used as inputs in various
models to study and plan the operation of the line, i.e. it would
be possible to run simulations on models using a full set of
actual measured parameters of transmission lines.

The paper is structured as follows. Section II describes the
modelling of multi-conductor transmission lines and modal
analysis of such models. Section III presents how the most
correct modal transformation matrices can be found. Conclu-
sions are summarised in section IV.

II. MATHEMATICAL BACKGROUND

A. Model of a three-phase transmission line

Let’s consider the matrix notation of a three-phase dis-
tributed parameter transmission line [6], [7]. The phase volt-



ages and currents at any point of the line are given as

u(l) =

Ua(l)
U b(l)
U c(l)

 , i(l) =

Ia(l)
Ib(l)
Ic(l)

 , (1)

where l is the distance toward the beginning of the line and
U i(l) and Ii(l) are the voltage and current phasors in phase
i.

According to Kirchhoff’s laws these quantities are related
by [6]

du(l)

dl
= Zi(l), (2)

di(l)

dl
= Yu(l), (3)

which can be further differentiated into
d2u(l)

dl2
= ZYu(l), (4)

d2i(l)

dl2
= YZi(l). (5)

The matrices in the equations above are the reduced
impedance and admittance matrices, denoted as

Z =

ẑaa ẑab ẑac
ẑba ẑbb ẑbc
ẑca ẑcb ẑcc

 , Y =

ŷaa ŷ
ab

ŷ
ac

ŷ
ba

ŷ
bb

ŷ
bc

ŷ
ca

ŷ
cb

ŷ
cc

 . (6)

These matrices are obtained from the self and mutual
impedances and admittances of phase and neutral conductors
by Kron’s reduction [7]. For example, an untransposed three-
phase transmission line with two neutral wires would be
described by an impedance matrix of the form

Z0 =


zaa zab zac zau zaw
zba zbb zbc zbu zbw
zca zcb zcc zcu zcw
zua zub zuc zuu zuw
zwa zwb zwc zwu zww

 =

[
Z1 Z2

Z3 Z4

]
(7)

where zii is the self impedance of conductor i and zik is the
mutual impedance of conductors i and k, both given per unit
length, with a, b, c being the phases and u and w the neutral
conductors. The reduction is carried out as [7]

Z = Z1 − Z2Z
−1
4 Z3. (8)

Admittances are found via the potential coefficient matrix

P0 =

[
P1 P2

P3 P4

]
, (9)

which has the same structure as Z0 [7]. The potential coeffi-
cient matrix is similarly reduced as

P = P1 −P2P
−1
4 P3, (10)

yielding the admittance matrix

Y = jωC = jωP−1. (11)

Under known conditions, the reduced impedance and ad-

mittance matrices Z and Y can be approximated by the
following (or similar) equations based on line design data.
The impedances are computed as

zik = rik + rd + jω
µ0

2π
ln
De

Dik

[
Ω

m

]
, (12)

where rik is the resistance of the conductor if i = k and zero
when i 6= k. Carson’s earth return corrections [8] are included
in rd = 9.869·10−7 Ω/m and De = 658.5

√
ρ/f m, where ρ is

ground resistivity and f is the fundamental frequency [7]. Dik

is the distance between two conductors if i 6= k and the GMR
of the conductor when i = k [7]. The GMR (geometric mean
radius) of a conductor depends on its radius and geometry of
the bundle, if it is bundled [9].

Elements of the potential coefficients matrix pik are com-
puted as

pik =
1

2πε0
ln
Hik

D′ik

[m

F

]
, (13)

where D′ik is like Dik but with the GMR of an individual
conductor taken equal to its radius; Hik is the distance from
conductor i to the image of k. The image of a conductor is an
imaginary conductor located at the same depth under ground
as the real conductor is above the ground (in average height)
[7]. For i = k the distance Hik = Hii is the double average
height of the conductor.

These kinds of calculations are always based on some
simplifications; moreover, under varying operating conditions
and over time factors such as the resistance of conductors,
geometry of lines, resistivity of earth, etc. change. However,
having measured values of voltage and current phasors avail-
able from both ends of the line would enable the estimation
of line parameters, even as they vary in time.

Equations (4) and (5) are theoretically solvable with respect
to the matrices ZY and YZ, however, the solutions are found
as matrix exponents and the number of unknowns exceeds the
number of equations [10]. Due to the coupling between phases,
there are no general solutions with respect to phase quantities

d2Ua(l)

dl2
= (ZY )11Ua(l) + (ZY )12U b(l)

+ (ZY )13U c(l), etc.
(14)

This means that the data from phasor measurements is insuf-
ficient for the estimation of the parameters of a three-phase
transmission line, as long as the phases are considered to be
coupled.

The system of equations given by (4) and (5) would have
a unique solution if the matrices ZY and YZ were diagonal.
The line parameter identification problem can be solved by
applying modal transformations. This, however, requires that
the correct transformation matrices are known [6].

B. Modal analysis

A modal transformation produces linear transformations of
voltage and current phasors [11]. Phase quantities are replaced



by modal quantities; the voltage and current vectors become

u′(l) =

U0(l)
U1(l)
U2(l)

 , i′(l) =

I0(l)
I1(l)
I2(l)

 , (15)

where indices 0, 1, and 2 denote the modes.
Phase quantities and modal quantities are associated by a

transformation matrix, so that u(l) = Tuu′(l) and i(l) =
Tii
′(l) [6]. Substituting these into Eqs. (4) and (5) and

assuming the transformation matrices to be independent of l,
it can be written that

d2u′(l)

dl2
= T−1

u ZYTuu′(l), (16)

d2i′(l)

dl2
= T−1

i YZTii
′(l). (17)

Modal decoupling is based on the eigendecomposition of
the ZY and YZ matrices. This means that the transformation
matrices Tu and Ti are chosen so that [6], [11]

〈λu〉 = T−1
u ZYTu, (18)

〈λi〉 = T−1
i YZTi, (19)

where 〈λu〉 and 〈λi〉 are diagonal matrices containing eigen-
values of the ZY and YZ matrices, respectively. It is known
that both the Z and Y matrices are symmetrical, so that
ZY = (YZ)T and 〈λu〉 = 〈λi〉.

Following that, the propagation matrix is defined as Γ =
(ZY)1/2 with eigenvalues denoted as γ0, γ1, and γ2 [6].
According to properties of eigenvalues, it can be seen that
〈γ2〉 = 〈λu〉 = 〈λi〉. The modal characteristic impedance ma-
trix is defined as 〈zc〉 = 〈γ〉−1T−1

u ZTi [6]. The diagonality
of 〈zc〉 can be verified based on previous definitions.

Eqs. (16) and (17) can be rewritten as

d2u′(l)

dl2
= 〈γ2〉u′(l), (20)

d2i′(l)

dl2
= 〈γ2〉i′(l). (21)

Solving these differential equations yields the equations for
the three-phase distributed parameter line, written in matrix
form as [6]

u′(l) = cosh〈γl〉u′(0) + 〈zc〉 sinh〈γl〉i′(0), (22)

i′(l) = 〈zc〉−1 sinh〈γl〉u′(0) + cosh〈γl〉i′(0), (23)

where

cosh〈γl〉 =

cosh(γ0l)
cosh(γ1l)

cosh(γ2l)

 , etc. (24)

Equations (22) and (23) can be solved for modal quantities
γm and zcm (elements of 〈γ〉 and 〈zc〉) as [4]

γm =
1

L
arcosh

[
Um(L)Im(L) + Um(0)Im(0)

Um(0)Im(L) + Um(L)Im(0)

]
, (25)

zcm =
Um(0) sinh(γmL)

Im(L)− Im(0) cosh(γmL)
. (26)

where m denotes the mode (0, 1, and 2) and L is the length
of the transmission line.

The reduced impedance and admittance matrices in the
phase domain can then be found by an inverse transform [6]

Z = Tu〈γ〉〈zc〉T−1
i , (27)

Y = Ti〈γ〉〈zc〉−1T−1
u . (28)

III. MODAL TRANSFORMATION MATRICES

A. Transposed lines
Modal transformations have mostly been studied for ap-

plications in frequency-dependent modelling of transmission
lines [11]–[14]. It is well known that a variation of the
Clarke transformation matrix (sometimes referred to as the
travelling-wave transformation matrix) coincides with one of
the possible transformation matrices of an ideally transposed
line [15], [16]. It is also known that for untransposed lines, the
unique transformation matrices closely resemble the Clarke
transformation matrix [6], [12]. However, to the authors’
knowledge, no analytical treatment has been given to why this
one matrix should be the preferred choice.

In order to analyse the transformation matrices, we return
to the eigendecomposition specified in Eqs. (18) and (19); we
denote A = ZY, and multiply (18) by Tu from the left to
write

Tu〈λ〉 = ATu. (29)

This is the eigenvalue equation for A with eigenvalues λ0,
λ1, and λ2; the eigenvectors v0, v1, and v2 form the columns
of the matrix Tu. Thus, the modal transformation matrix Tu

is specified by the eigenvectors of A [6]. Similarly, the other
transformation matrix Ti is specified by the eigenvectors of
YZ = AT.

As a first approach in analysing the eigenvectors, it would be
reasonable to start off from a perfectly transposed (balanced)
system, i.e. we specify

A′′′ =

zi zk zk
zk zi zk
zk zk zi

·
yi yk yk
yk yi yk
yk yk yi

 =

q s s
s q s
s s q

 , (30)

where q and s are still complex numbers but the underline
is omitted for simpler notation. The matrix A′′′ has only two
unique eigenvalues λ′′′0 = q+2s and λ′′′1 = λ′′′2 = q−s, which
yield an infinite set of transformation matrices formed by the
eigenvectors [1, 1, 1]T and [1, x,−1−x]T, x ∈ C. All of these
possible matrices are essentially correct for transformations
with ideally transposed lines.

In practical cases, the transposition is not ideal. Thus, it
should be determined if there is a transformation matrix that
is most accurate when the transposition is realistic, i.e. it is
only close to ideal. To study this, a modified, or perturbed,
matrix is assumed

A′′ =

q s s′

s q s
s′ s q

 , (31)

where s′ = s+ ∆s is s perturbed by a small quantity ∆s.



The eigenvalues of matrix A′′ are expressed as

λ′′0 = q − s′,

λ′′1 =
1

2

(
2q + s′ −

√
8s2 + s′2

)
,

λ′′2 =
1

2

(
2q + s′ +

√
8s2 + s′2

)
.

(32)

The corresponding eigenvectors are

v′′0 = [−1, 0, 1]
T
,

v′′1 =

[
1,

3ss′ − s
√

8s2 + s′2

2s2 + s′2 − s′
√

8s2 + s′2
, 1

]T
,

v′′2 =

[
1,

3ss′ + s
√

8s2 + s′2

2s2 + s′2 + s′
√

8s2 + s′2
, 1

]T
.

(33)

It can be seen that the perturbed matrix A′′ has sets of three
unique eigenvalues and eigenvectors.

In the definition of A′′ we assumed s′ = s + ∆s, so we
examine the limits when ∆s approaches zero (keeping in mind
that s is complex). We see that for the middle element of v′′1

lim
∆s→0

3ss′ − s
√

8s2 + s′2

2s2 + s′2 − s′
√

8s2 + s′2
=

{
−2 if s > 0

1 if s ≤ 0
(34)

and for v′′2

lim
∆s→0

3ss′ + s
√

8s2 + s′2

2s2 + s′2 + s′
√

8s2 + s′2
=

{
1 if s ≥ 0

−2 if s < 0
. (35)

Also, it is clear that for ideally transposed lines the two
transformation matrices are equal Ti = Tu.

When ∆s→ 0, the eigenvectors form a unique modal trans-
formation matrix which, if scaled and ordered accordingly,
becomes a variation of the Clarke transformation matrix [12]

TC =

1/
√

3 1/
√

6 1/
√

2

1/
√

3 −2/
√

6 0

1/
√

3 1/
√

6 −1/
√

2

 . (36)

This is a simple way to show that in cases when the line is
imperfectly transposed, the Clarke transform matrix is close
to the correct solution and the preferred choice out of all
the generally applied transformation matrices of an ideally
transposed line.

It appears that for an ideally transposed transmission line
a single preferred modal transformation matrix (nevertheless,
still arbitrarily scaled) can be chosen. This matrix remains
constant even when line parameters themselves change in time
due to environmental or other changes, as long as the line is
transposed.

The importance of this can be demonstrated on a simple
example. To form the modal transformation matrix for trans-
posed lines, the first two eigenvectors are taken as [1, 1, 1]T and
[1, 0,−1]T (x = 0), like described earlier. The third column of
the matrix can be [1, 1,−2]T (x = 1), [1,−1, 0]T (x = −1),
[1,−2, 1]T (x = −2), etc. When any of these transformation
matrices are applied on a balanced matrix (as in (30)), the

matrix is successfully diagonalised. However, when the matrix
to be diagonalised differs from the balanced case (as in (31)),
it is the third transformation matrix (equivalent to (36)) that
yields smaller off-diagonal elements and, thus, smaller errors
than other options.

B. Untransposed lines
For an untransposed line, there are two unique modal trans-

formation matrices Tu and Ti, dependent on its parameters.
The asymmetry of the transmission line is carried over to the
ZY and YZ matrices and the corresponding transformation
matrices. However, since the eigenvectors of a matrix are
arbitrarily scaled, there are many cases when changes in
the ZY and YZ matrices leave the transformation matrices
unchanged.

Section II-A presents one approximation for the calculation
of the reduced impedance and admittance matrices Z and Y.
It can be assumed that during the operation of a transmission
line its geometry and the physical properties of conductors are
mostly only affected by changes in temperature. The quantity
with the highest uncertainty and variability along the length of
the line is earth resistivity. All other variables affecting Z and
Y are assumed to be known accurately enough and change
negligibly in time.

Based on these considerations, the modal transformation
matrices of an untransposed transmission line are analysed
in a sensitivity analysis. The temperature of the conductor
and earth resistivity are varied and the transformation matrices
re-evaluated for each change to observe any variations from
results based on initial input values.

Calculations described in section II-A are modified to
include changes in conductor temperature. The temperature
dependent resistance is taken as

rii = rref(1 + α∆T ), (37)

where rii is the series resistance given in Eq.(12), rref is the
reference value of resistance at a certain temperature, ∆T is
the change in conductor temperature, and α is the temperature
coefficient of resistance.

The temperature dependent average sag of the line is
estimated in a simplified way as

h =

√
3

8
d

[(
d+

8h2
ref

3d

)(
1 + ξ∆T

)
− d
]
, (38)

where d is the average span, href is the average sag calculated
from design data, and ξ is the thermal elongation coefficient
[17].

The calculations are carried out on a common untransposed
transmission line with bilateral symmetry. The geometry of
the line is specified in Fig. 1. The sag of all conductors is
9 m, the diameter of phase conductors is 2.77 cm and for
neutral conductors the value is 1.43 cm, the resistances are
0.072 Ω/km and 0.35 Ω/km, respectively. Earth resistivity in
the base case is assumed to be 100 Ω·m.

The transformation matrices Tu and Ti can always be
scaled in such a manner that only two elements differ from the



a b c

u w

10 m

12.8 m

9.5 m

22 m

0.4 m

Fig. 1. Geometry of the line used in the sensitivity analysis of modal
transformation matrices. A vertical plane of symmetry passes through the
bundle of phase ’b’.

Clarke transformation matrix given in (36). In the following,
only the middle elements of the first two columns of the
transformation matrix are analysed. The third column is the
same for both transposed and untransposed lines.

Results of the sensitivity analysis are presented in Fig. 2
and Fig. 3. The plots show that large changes in conductor
temperature and large errors in specifying earth resistivity
cause very small changes in the transformation matrices.
Based on the data it can be suggested that for a specific
transmission line the transformation matrices can be calculated
once and assumed constant for measurement based estimation
of reduced matrices of line parameters.
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Fig. 2. Relative (per unit) changes in the elements of the transformation
matrices of an untransposed transmission line under changing conductor
temperautre.

The results can be explained based on the following consid-
erations. Firstly, a similar conclusion can be made for trans-
posed lines, as their transformation matrices are constant under
the same circumstances. Secondly, the difference from the
Clarke transformation matrix in the transformation matrices
of untransposed lines are caused by the asymmetry between
phases. The quantities, in which the changes were analysed,
affect all phases equally and, thus, it can be expected that
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Fig. 3. Relative (per unit) changes in the elements of the transformation
matrices of an untransposed transmission line under varying values of earth
resistivity.

the changes in the asymmetry between phases themselves
is negligible. This in turn means that the changes in the
transformation matrices are also expected to be negligible, as
seen from the sensitivity analysis.

IV. CONCLUSIONS

The paper presents how the most accurate modal trans-
formation matrices can be chosen for the estimation of the
parameters of transposed or untransposed transmission lines
from phasor measurements. These transformation matrices are
found for use in estimating the reduced impedance and admit-
tance matrices of a three-phase transmission line, considering
the coupling of phase quantities.

Firstly, it is analysed why there exists a unique preferred
modal transformation matrix for use on transposed lines, even
though theoretically, there is an infinite number of correct
modal transformation matrices for ideally transposed lines.
Using perturbation analysis, it is shown that when the system
deviates from the ideal case, the single preferred transforma-
tion matrix is closest to the correct one.

Secondly, it is shown that in case of untransposed lines it is
not necessary to make the simplification of using the transfor-
mation matrix of transposed lines, but instead, more correct
modal transformation matrices can be calculated from line
design data and assumed constant. In a sensitivity analysis it is
demonstrated that modal transformation matrices are negligi-
bly affected by changes in environment-dependent quantities.
Thus, for applications estimating line parameters from phasor
measurements, the transformation matrices can be calculated
once and assumed constant for a certain transmission line.
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