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Abstract-- Stochastic characteristics of wind power 

generation may lead to reliability and power quality problems in 
power systems. This paper presents two control schemes 
considering state-of-charge (SOC) in the energy storage system 
for the wind-turbine-generator: constant power mode and power 
balance mode.  Because the response of energy storage system is 
not fast enough, estimated coming wind power is gained by wind 
speed forecasting for the charging/discharging control applied to 
the energy storage system.  An on-line learning algorithm is 
developed in an Elman-based recurrent neural network 
implemented in the power balance mode to conduct the wind 
speed forecasting several minutes ahead.  This paper uses a 
Real-time Digital Simulator (OPAL-Lab OP5600) to investigate 
the performance of the proposed method. The on-line learning 
Elman-based recurrent neural network is implemented by a 
Xilinx FPGA.  The wind-turbine-generator, power converters, 
energy storage, resistance load and the power grid are modeled 
in the Real-time Digital Simulator using SIMULINK/ARTEMIS.  
Thus, a co-simulation (i.e., FPGA-in-the-loop simulation) is 
developed in this work. The ratio of CPU times required to study 
a scenario by a regular PC, Windows Target, and OPAL-Lab on 
the average is about 14.2: 1.87: 1.  The studied results obtained 
from this FPGA-in-the-loop simulation verify the applicability of 
the proposed method. 

Keywords:  On-line learning, wind power, forecasting, 
real-time simulation, FPGA. 

I.  INTRODUCTION 
ISTRIBUTED Generation (DG, e.g., wind farm, 
photovoltaic array, fuel cell and micro-turbine, etc.) has 

attracted increasing attention due to its significant impact on 
environment and mitigation of greenhouse gas emission. 
Especially, there are many commercial products, which can 
provide larger real power from the wind-turbine-generators in 
the power system.  However, the stochastic characteristics of 
wind power generation lead to reliability and power quality 
problems in power systems. To help improve the operational 
problem caused by intermittent characteristics of wind power 
generations, many methods were proposed to implement the 
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energy storage system to regulate the power fluctuation. 
Essentially, these methods were classified into two categories: 
steady-state and dynamic studies.   

For the steady-state studies, Wang et al. proposed a 
technique to evaluate operational reliability and energy 
utilization efficiency of power systems with high wind power 
penetration [1]. The ramp rate of a conventional generator and 
energy storage system were considered. The impact of slow 
ramp-up rate or fast reduction of wind speed on system 
reliability is measured by the expected energy not supplied. 
Ghofrani et al. dealt with optimal placement of the energy 
storage units within a deregulated power system to minimize 
its hourly social cost [2]. Wind generation and load are 
modeled using probabilities for utilizing probabilistic optimal 
power flow (POPF) to maximize wind power utilization over a 
scheduling period. Hartmann and Dán proposed two different 
complementary methods to determine the parameters (rated 
power and energy) of a grid-connected energy storage unit that 
is capable of providing auxiliary control reserves required by 
wind power plants where the power system may be partially or 
wholly not capable of operation [3]. Wee et al. designed a 
battery-supercapacitor energy storage system for a wind farm 
[4]. By treating the input wind power as a random variable and 
using a proposed coordinated power flows control strategy for 
the battery and the supercapacitor, the proposed method 
evaluated the energy storage capacities and the expected 
cost/year of unmet power dispatch. Ghofrani et al. presented a 
genetic algorithm-based approach together with a probabilistic 
optimal power flow to optimally place and adequately size the 
energy storage [5]. The proposed method minimized the sum 
of operation and interrupted-load costs over a planning period. 

The dynamic studies, on the other hand, addressed 
dynamic/real-time simulation and control strategies. Brekken 
et al. proposed sizing and control methodologies for an energy 
storage system based on artificial neural network control 
strategies which resulted in significantly lower cost energy 
storage systems than simplified controllers [6]. Jiang et al. 
proposed a battery energy storage system using a dual-layer 
control strategy consisting of a fluctuation mitigation control 
layer and a power allocation control layer to mitigate wind 
farm power output fluctuations [7]. This method combined 
both dynamic control and steady-state mixed-integer quadratic 
programming. Lee et al. proposed a method to compensate the 
output of Cheju Island’s Heangwon wind farm by utilizing (i) 
a superconducting flywheel, which has a quick response and 
low power capacity, and (ii) a battery energy storage system, 
which has a comparatively lower response capability and high 
power capacity [8]. Jiang and Hong presented a wind power 
filtering approach to mitigate short- and long-term fluctuations 
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using a hybrid energy storage system sized by a novel 
wavelet-based capacity configuration algorithm [9, 10]. An 
ultra-capacitor bank mitigated short-term fluctuations and a 
lithium-ion battery bank minimized long-term fluctuations. 
Delille et al. presented a dynamic approach to study the 
provision of a dynamic frequency control supported by energy 
storage systems while considering large wind or solar 
generations [11]. The results showed that fast-acting storage, 
like a synthetic inertia, can mitigate the impact of these 
sources in case of a major generation outage. Islam et al. 
presented a control scheme combined with short-term wind 
speed prediction for management of the stored energy in a 
small capacity flywheel energy storage system which was 
used to mitigate the output power fluctuations of an 
aggregated wind farm [12]. In this study, a wind speed 
prediction was conducted by artificial neural network, which  
was developed in MATLAB/Simulink and interfaced with 
PSCAD/EMTDC.  

This paper presents two control modes considering 
state-of-charge (SOC) in the energy storage system for the 
wind-turbine-generator: constant power mode and power 
balance mode.  Because the response of energy storage 
system is not fast enough, estimated coming wind power is 
gained by wind speed forecasting for the charging/discharging 
controls applied to the energy storage system.  An on-line 
learning algorithm is developed in an Elman-based recurrent 
neural network implemented in the control schemes to conduct 
the wind speed forecasting several minutes ahead.  This 
paper uses a Real-time Digital Simulator (OPAL-Lab 
OP5600) to investigate the performance of the proposed 
method. The on-line learning Elman-based recurrent neural 
network is implemented by a Xilinx 
FPGA (Field-Programmable Gate Arrays)

II.  PROPOSED METHOD 

. The wind-turbine- 
generator, power converters, energy storage, resistance load 
and the power grid are modeled in the Real-time Digital 
Simulator using SIMULINK/ARTEMIS.  The tests are 
conducted by a co-simulation (i.e., FPGA-in-the-loop 
simulation) in this work. 

As described in Sec. I., the energy storage system is 
placed at the DC bus to perform the constant power mode and 
power balance mode, as shown in Fig. 1.  The wind turbine 
provides a torque to the permanent magnetic synchronous 
generator (PMSG).  Fig. 2 illustrates the control module 
consists of these two modes with the input of SOC 
(state-of-charge) measurement from the energy storage.  The 
control module receives either a constant power setting or load 
value for balancing, in additional to forecasted wind power 
generation. The MK ES10-12S Pb-acid batteries (600V, 
833Ah) are modeled herein.  The numbers of series and 
parallel batteries are 12 and 83, respectively.  The SOC is 
operated within 20%~85% [13] for prolonging the life of the 
batteries. 

 
Fig. 1. The studied system. 
 

 
Fig. 2. The control, charging, discharging, and measurement modules. 
 

 Because the response of energy storage system is not fast 
enough, estimated coming wind power, applied to the energy 
storage system only in the power balance mode, is acquired by 
the wind speed forecasting result.  An on-line learning 
algorithm is developed in an Elman-based recurrent neural 
network to conduct the wind speed forecasting several minutes 
ahead.   

A. On-line Learning in Recurrent Neural Network 
The wind speeds S(t-1), S(t-2) and S(t-3) are used to 

forecast S(t) in this paper using the Elman-based recurrent 
neural network, as shown in Fig. 3. The weighting factors 
and biases (thresholds) are acquired when the off-line 
training iterations converge using MATLAB.  Table 1 
shows the definitions of variables in MATLAB. The 
convergent values of these variables serve as initial 
conditions for on-line learning algorithm while on-line 
conditions are concerned. 
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Fig.3. Recurrent neural network for wind speed forecasting. 

 



 

 

TABLE I 
DEFINITIONS OF VARIABLES IN MATLAB. 

Variables in MATLAB Definitions  
IW1,1 Weighting factors in input layer 
LW1,1 Weighting factors in recurrent layer 
LW2,1 Weighting factors in output layer 
B1 Bias (threshold) in input layer 
B2 Bias (threshold) in output layer 

 
In this paper, only the weighting factors and biases in the 

output layer are updated on-line. Let the activation function in 
the output layer be hyperbolic tangent as follows. 

     𝑓(𝜑) = 𝑦 = 1
1+𝑒−𝜑

                    (1) 

Compute the derivative of (1): 
𝑑
𝑑𝜑
𝑓(𝜑) = 𝑒−𝜑

(1+𝑒−𝜑)2 = (𝑦 − 1)𝑦2                         (2) 

Let the input values and the bias in the output layer be: 

𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛,−1]                                     (3) 

and the weighting factors and coefficient of the bias be 

𝑊 = [𝑤1,𝑤2, … ,𝑤𝑛, 𝑏]                             (4) 

Then the output can be expressed as follows: 

𝜑 = 𝑊 ∙ 𝑋𝑇 = 𝑤1 × 𝑥1 + 𝑤2 × 𝑥2 + ⋯+ 𝑤𝑛 × 𝑥𝑛 − 𝑏      (5) 
 

Then 𝜕𝜑
𝜕𝑤𝑖

= 𝑥𝑖 , 𝑖 = 1, 2, … ,𝑛                       (6) 
and 

𝜕𝜑
𝜕𝑏

= −1                                  (7)  

Let y* be known. If the error function E(e)=e2/2=(y*-y)2

𝜕𝐸(𝑒)
𝜕𝑤𝑗

= 𝑒 ∙
𝜕𝑒

𝜕𝑤𝑗
= −𝑒 ∙

𝑑𝑦

𝑑𝜑
∙
𝜕𝜑

𝜕𝑤𝑗
= −𝑒 ∙ (𝑦 − 1) ∙ 𝑦2 ∙ 𝑥𝑗  (8) 

/2, 
then 

 
𝜕𝐸(𝑒)
𝜕𝑏

= 𝑒 ∙
𝜕𝑒

𝜕𝑏
= −𝑒 ∙

𝑑𝑦

𝑑𝑏
∙
𝜕𝜑

𝜕𝑏
= 𝑒 ∙ (𝑦 − 1) ∙ 𝑦2        (9) 

Equations (8) and (9) are used to serve as ∆wj and ∆b to 
update the weighting factor wj 

 

and bias b in the output layer 
on-line [14]. When the wind speed S(t) is forecasted using 
S(t-1), S(t-2) and S(t-3), the wind power generation at time t is 
estimated using Fig. 4.  This wind power generation serves as 
an input to the control module, as shown in Fig. 2. 

Fig. 4. kW vs. m/s for a 500kW PMSG. 

B. Constant Power Mode and Power Balance Mode 
In the constant power mode, the PMSG is operated 

with the maximum power point tracking (MPPT) or 
user-defined kW which is smaller than that controlled by 
MPPT.  If the energy storage is operated in the constant 
power mode, then the total output from both the wind power 
and energy storage is fixed at a specified value, e.g., 500 kW. 
The control logic for the power balance mode of the energy 
storage is shown in Fig. 5.  If the value of SOC within its 
specified limits, then two “0” are sent to XNOR.  If W ≥ C, 
then “AND gate 1” outputs “1” enabling the charging action. 
This paper implements 10A in the constant current charging 
mode.   On the contrary, If W < C, then “AND gate 2” 
outputs “1” enabling the constant-voltage discharging action. 
If the SOC is smaller than its low limit, the charging mode is 
activated. The voltage of DC bus should follow the curve 
given in Fig. 6 in order to compensate the insufficient power 
between the wind-turbine generator and the demand. 

In the power balance mode, the wind power generation 
is forecasted and the level of load is known. The control logic 
is similar to that in Fig. 5, except for the “Constant kW 
setting” replaced by “Constant total power.”  Fig. 7 shows 
the kW generation from energy storage vs. the DC voltage. 

 

 
Fig. 5. Control logic of constant power mode. 

 
Fig. 6. Power generation vs. DC voltage in the constant power mode. 
 

 
Fig. 7. Power generation vs. DC voltage in the power balance mode. 
 

C. Real-time Digital Simulator 
To implement the proposed method, a real-time 

simulation approach using eMegaSim for the studied system 



 

 

in Fig. 1 is presented in this work. The eMegaSim developed 
by Opal-RT Technologies Inc. is utilized by a host computer 
and a target computer with 4 cores in one CPU [15]. The 
eMegaSim consisting of software (RT-Lab) and hardware 
(target computer OP5600; Inter(R) i686 3.3GHz, 4.0GB 
RAM) can be completely integrated with the 
SIMULINK/ARTEMIS. The user can develop his 
SIMULINK/ARTEMIS code in a host PC (Intel(R) 
Core(TM)2 Quad CPU Q9400 2.6GHz, 3.25GB RAM herein) 
first. The parallel computation was realized in 
Opal-RT-Redhat OS. The Simulink-based code is then moved 
to the Opal-RT-Redhat OS to achieve parallel computation in 
the target computer.   

A powerful FPGA is included in OP5600. 

 

A Xilinx 
ML605 development board, which is based on the Xilinx 
Virtex-6 CX6VLX240T processor, is used for floating-point 
models and projects requiring the use of large amounts of 
on-board memory.  In this paper, Xilinx System Generator 
(ISE 12.3) for DSP is used to design both the on-line learning 
algorithm and the neural network.  The other parts of the 
studied system (e.g., PMSG, AC/DC converter, DC/AC 
converter, energy storage system, filter, load, and utility 
system) are modeled by using SIMULINK/ARTEMIS. Fig. 8 
shows the on-line learning algorithm developed using Xilinx 
System Generator. 

Fig. 8. Modularized on-line learning algorithm using Xilinx System 
Generator. 

III.  TEST RESULTS 
The studied system is shown in Fig. 1. This system 

includes a PMSG whose rate voltage and capacity are 380 V 
and 500 kVA, respectively. The cut-in and cut-off wind speeds 
are 2.5 and 24 m/s, respectively. The Pb-Acid energy battery 
system is operated at 600 V and 833Ah.  The utility side is 
operated at 11.4 kV, 40 MVA (short circuit capacity) and 
X/R=7.   

A. Scenario 1- Constant Power Mode with Decreasing Wind 
Speed  
   In this scenario, the total kW generation from the energy 
storage system and wind-turbine generator is 500 kW in case 
of 20%≤SOC≤85%. The variation of wind speed is shown in 
Fig. 9. If the wind speed exceeds 14 m/s, the wind-turbine 
generator produces 500 kW which charges the batteries; 

otherwise, the energy storage discharges.  Figs. 10 and 11 
illustrate the variations of SOC and kW/kVAR, respectively.  
It can be found that the kW from the energy storage can 
compensate the shortage of wind power.      

 
Fig. 9. Variation of wind speed in Scenario 1.  

 
Fig. 10. Variation of SOC in Scenario 1. 

 
Fig. 11. Variations of kW/kVAR in Scenario 1. 
 
B. Scenario 2- Constant Power Mode with Increasing Wind 
Speed 
   Scenario 2 shows the energy storage system is operated 
with the constant power mode while the wind speed is 
increasing, as shown in Fig. 12. Due to the wind speed, the 
energy storage discharges (S(t) ≤14 m/s) before 20 minutes 
and charges (S(t) >14 m/s) after 20 minutes, as shown in Fig. 
13. Fig. 14 gives the variations of kW/kVAR in all devices.  
It can be found that 500-kW generation from the energy 
storage and wind-turbine generator still remains.  

 
 

 



 

 

Fig. 12. Variation of wind speed in Scenario 1. 

 
Fig. 13. Variation of SOC in Scenario 1. 

 
Fig. 14. Variations of kW/kVAR in Scenario 2. 

C. Scenario 3- Power Balance Mode with Adequate Wind 
In the power balance mode, the on-line learning 

algorithm is used to forecast the future wind speed which is 
used to evaluate the wind power generation. The time interval 
is 17 minutes; that’s, the wind speeds at t=0, 17, 34 minutes 
are utilized to forecast that at t=51 minutes. 

Fig. 15 shows the wind speeds are within 4-8 m/s 
which is corresponding to 30-180kW.  Fig. 16 illustrates the 
variation of SOC.  In this scenario, the load is 300 kW.  
Before t=51 minutes, the wind power is not forecasted and the 
wind power generation is smaller than the load; consequently, 
the energy storage provides inadequate power during this 
interval.   After t=51 minutes, the evaluated wind power 
incorporating with the neural network forecasting is smaller 
than the load; thus, the energy storage still discharges.  Fig. 
17 shows the variations of kW/kVAR in Scenario 3. 

 
Fig. 15. Variation of wind speed in Scenario 3. 

 
Fig. 16. Variation of SOC in Scenario 3. 

 
Fig. 17. Variations of kW/kVAR in Scenario 3. 

D. Scenario 4- Power Balance Mode with Abounding Wind 
    Fig. 18 shows the wind speeds are within 3-14 m/s which 
corresponds to 20-500kW.  Fig. 19 illustrates the variation of 
SOC.  
    Before t=51 minutes, no forecasted wind speed/power are 
available. In case the wind power generation exceeds the 
demand, the energy storage is standby; otherwise, the energy 
storage compensates the inadequate amount from the wind 
power. 

After t=51 minutes, if the output of the neural network 
implies that the evaluated wind power is smaller than the 
demand, the energy storage discharges; otherwise charges. 
The wind power plus the energy storage power retains 350 kW 
(level of load in this scenario). Near t=91 minutes, the wind 
power is much greater than the load and the power system 
receives the excess power, as shown in Fig. 20. 



 

 

 
 Fig. 18. Variation of wind speed in Scenario 4. 

 
Fig. 19. Variation of SOC in Scenario 4. 

 
Fig. 20. Variations of kW/kVAR in Scenario 4. 

E. Simulation Times 
     In this paper, the Opal-RT OP5600 is adopted to study 
the above FPGA-in-the-loop simulation.  The OPF5600 has 
four 3.3-GHz processor cores with the real-time operating 
system of QNX and Red Hat Linux. For comparative studies, 
the Window Target and regular PC are used to study the same 
scenarios.  The sampling rate is 10 µs and ODE3 algorithm 
for solving differential equations is used. Due to the long 
elapsed time required, the simulation time is scaled down to 
1/60. For example, realistic 30 minutes will be simulated in 30 
seconds.  Table II shows the CPU times required in all 
simulations.  Please note that Window target and regular PC 
cannot conduct the FPGA-in-the-loop simulation; that’s, the 
neural network is realized by SIMULINK.  It can be found 
that the OP5600 conducts the real-time simulation but both 
Window Target and regular PC require long CPU times. For 

scenario 1, the ratio of CPU times required by a regular PC, 
Windows Target, and OPAL-Lab on the average is 14.2: 1.87: 
1. Table III shows the resources used in the developed FPGA 
in Opal-RT OP5600.  The operating frequency of the FPGA 
is 13.785MHz. 
 

TABLE II 
COMPARATIVE STUDIES USING DIFFERENT SIMULATION TOOLS. 

Scenarios Simulation 
time 

Simulation tool CPU times 
(s) 

Scenario 1 30 min 
RT-Lab 29.97  

Windows Target 56 
Regular PC 427 

Scenario 2 30 min 
RT-Lab 29.97 

Windows Target 57 
Regular PC 434 

Scenario 3 120 min 
RT-Lab 119.88 

Windows Target 231 
Regular PC 2697 

Scenario 4 120 min 
RT-Lab 119.88 

Windows Target 499  
Regular PC 2732 

 
TABLE III 

RESOURCES USED IN XILINX VIRTEX-6 CX6VLX240T FPGA 
Items Utilizations 

Number of Slice Registers 971 out of 301440 
Number of Slice LUTs 23773 out of 150720 
Number used as Logic 23757 out of 150720 

Number used as Memory 16 out of 58400 
Number of Flip Flops 23773 out of 24744 

Number of LUT 971 out of 24744 
Number of DSP48E1s 762 out of 768 

 

IV.  CONCLUSIONS 
In this paper, two control modes developed in an energy 

storage system are presented for power regulations of a 
grid-connected wind-turbine generator.  The power balance 
mode tends to compensate the inadequate power caused by the 
intermittent wind power to the local load while the constant 
power mode conducts a fixed power generation from both 
wind-turbine and energy storage.  The Xilinx Virtex-6 
CX6VLX240T FPGA in Opal-RT OP5600 is utilized to 
implement the on-line learning algorithm and recurrent neural 
network to forecast the wind power/speed.  The proposed 
method is validated with test results based on 
FPGA-in-the-loop simulations by using the real-time 
Opal-Lab simulator. From the simulations, it can be found the 
proposed method can efficiently regulate the specified power 
in different wind speed conditions. Moreover, the developed 
FPGA can be implemented for realistic applications.  

V.  ACKNOWLEDGMENT 
The authors gratefully acknowledge the financial support 

from the Ministry of Science and Technology in Taiwan under 
the grant number MOST 104-3113-E-042A-004 -CC2.  

VI.  REFERENCES 
[1] P. Wang, Z.Y. Gao, and L.B. Tjernberg, “Operational adequacy studies of 
power systems with wind farms and energy storages,” IEEE Trans. on Power 



 

 

Systems, vol. 27, no. 4, pp. 2377-2384, Nov. 2012.   
[2] M. Ghofrani, A. Arabali, M. Etezadi-Amoli, and M.S. Fadali, “A 
framework for optimal placement of energy storage units within a power 
system with high wind penetration,” IEEE Trans. on Sustainable Energy, vol. 
4, no. 2, pp. 434-442, Apr. 2013. 
[3] B. Hartmann and A. Dán, “Methodologies for storage size determination 
for the integration of wind power,” IEEE Trans. on Sustainable Energy, vol.  
5, no. 1, pp. 182-189, Jan. 2014. 
[4] K.W. Wee, S.S. Choi, and D. M. Vilathgamuwa, “Design of a least-cost 
battery-supercapacitor energy storage system for realizing dispatchable wind 
power,” IEEE Trans. on Sustainable Energy, vol. 4, no. 3, pp. 786-196, July 
2013. 
[5] M. Ghofrani, A.Arabali, M. Etezadi-Amoli, and M. S. Fadali, “Energy 
storage application for performance enhancement of wind integration,” IEEE 
Trans. on Power Systems, vol. 28, no. 4, pp. 4803-4811, Nov. 2013.  
[6] T.K.A. Brekken, A.Yokochi, A. von Jouanne, Z.Z. Yen, H.M. Hapke, and 
D.A. Halamay, “Optimal energy storage sizing and control for wind power 
applications,” IEEE Trans. on Sustainable Energy, vol. 2, no. 1, pp. 69-77, Jan. 
2011. 
[7] Q.Y. Jiang, Y.Z. Gong, and H,J. Wang, “A battery energy storage system 
dual-layer control strategy for mitigating wind farm fluctuations,” IEEE Trans. 
on Power Systems, vol. 28, no. 3, pp. 3263-3263, Aug. 2013.  
[8] H. Lee, B.Y. Shin, S. Han, S. Jung, B. Park, and G. Jang, “Compensation 
for the power applications,” IEEE Trans. on Applied Superconductivity, vol. 
22, no. 3, June 2012.  
[9] Q.Y. Jiang and H.S. Hong, “Wavelet-based capacity configuration and 
coordinated control of hybrid energy storage system for smoothing out wind 
power fluctuations,” IEEE Trans. on Power Systems, vol. 28, no. 2, pp. 
1363-1369, May 2013.  
[10] Q.Y. Jiang and H.J. Wang, “Two-time-scale coordination control for a 
battery energy storage system to mitigate wind power fluctuations,” IEEE 
Trans. on Energy Conversion, vol. 28, no. 1, pp. 52-61, Mar. 2013.  
[11] G. Delille, B. François, and G. Malarange, “Dynamic frequency control 
support by energy storage to reduce the impact of wind and solar generation 
on isolated power system’s inertia,” IEEE Trans. on Sustainable Energy, vol. 
3, NO. 4, pp. 931-939, Oct. 2012.  
[12] F. Islam, A. Al-Durra and S.M. Muyeen, “Smoothing of wind farm 
output by prediction and supervisory-ontrol-unit-based FESS,” IEEE Trans. 
on Sustainable Energy, vol. 4, no. 4, pp. 925-933, Oct. 2013. 
[13] N. Pinsky, J. Argueta, T. Knipe, V. Grosvenor, L. Gaillac, M. Merchant 
and A. Cabrera,“Fast charge of lead acid batteries at the SCE EV Tech 
Center,”The Fifteenth Annual Battery Conference on Applications and 
Advances, pp.231-236, 11-14 Jan. 2000. 
[14] W.M. Lin and C.M. Hong,“A New Elman Neural Network-Based 
Control Algorithm for Adjustable-Pitch Variable-Speed Wind-Energy 
Conversion Systems,”IEEE Trans. on Power Electronics, vol. 26, no. 2, pp. 
473-481, Feb. 2011. 
[15] http://opal-rt.com/ 
 
 
 
 

http://opal-rt.com/�

	I.   Introduction
	II.   Proposed Method
	III.   Test Results
	IV.   Conclusions
	V.   Acknowledgment
	VI.   References

