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A Comprehensive Study on the Influence of
Proximity Effects on Electromagnetic Transients in

Power Cables
Utkarsh R. Patel and Piero Triverio

Abstract—In this paper, we present a comprehensive study
on the influence of proximity effects on electromagnetic tran-
sients in underground power cables. Existing simulators for
electromagnetic transients (EMT) neglect proximity effects when
computing cable parameters. It has been demonstrated that,
in some scenarios, this approximation can result in significant
errors on the predicted transients. The goal of this study is to
identify the scenarios where proximity effects must be taken into
account, and the error that one may incur if such effects are
neglected. The study is performed using the recently-proposed
MoM-SO method for the determination of cable resistance and
inductance. MoM-SO accurately predicts skin, proximity, and
ground effects over the frequency range of interest for transient
analyses, with an accuracy comparable to time-consuming finite
element calculations. The study considers cables of different
type and geometry under multiple excitation scenarios. Results
elucidate the role of proximity effects on the response of typical
power cables and are finally summarized into guidelines to help
power engineers model power cables accurately.

Keywords: Series impedance computation, wideband cable
modeling, underground cables, electromagnetic transients, prox-
imity effects.

I. INTRODUCTION AND MOTIVATION

Electromagnetic transients induced by phenomena such as
faults, lightning, and breakers operation are a major concern
for power grid operators, and must be accurately predicted
using electromagnetic transient (EMT) simulators during grid
planning. These analyses can be performed only if accurate
models are readily available for all parts of the system,
including underground cables that are increasingly used by the
power industry. Most EMT tools on the market use analytic
formulas [1] to model power cables. Unfortunately, such
formulas neglect proximity effects that may develop when core
conductors or sheaths are close to each other. While, for certain
cable configurations, this approximation is well-posed, recent
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works [2], [3], [4], [5] demonstrated that neglecting proximity
may lead to erroneous transient predictions in commonly-used
cable configurations, such as flat and pipe-type formations.

The goal of this study is to thoroughly investigate proximity
effects on power cables, and elucidate their influence on
transient scenarios. We consider two among the most common
formations for three-phase power cables (flat formation and
pipe-type), and we parametrize the analysis with respect to
cable geometry and material parameters. Different excitation
conditions are investigated in order to understand how proxim-
ity effects affect the different modes that can propagate along a
cable, such as the core-sheath mode and the intersheath mode.
The error caused by neglecting proximity effects on transient
waveforms and power loss is quantified and thoroughly anal-
ysed. Finally, guidelines are proposed to assist power engineers
in understanding when proximity effects must be taken into
account, and when they can be neglected with an acceptable
accuracy loss.

In this study, cable parameters are computed with the
recently-proposed MoM-SO method [6], [7], [8]. In compar-
ison to analytic formulas employed by most EMT solvers,
MoM-SO accurately predicts proximity, and ground effects, in
addition to skin effect. MoM-SO was demonstrated [6], [7],
[8] to be as accurate as other proximity-aware methods, such
as the finite element method (FEM), conductor partitioning or
other general-purpose electromagnetic solvers [9], [10], [11].
However, while the FEM analysis of a single power cable can
take several hours, MoM-SO requires only a few seconds.

II. MOM-SO

In this Section, we briefly review the MoM-SO method
which will be used to investigate proximity effects in power
cables. MoM-SO computes the per-unit-length resistance and
inductance of cables made by solid and hollow (tubular)
conductors in arbitrary position [6], [7]. The conductors can
be in air or buried into ground, which is modelled as a lossy
conductor with conductivity σg . Conductors can be in direct
contact with the surrounding ground, or can be placed in a
hole dug in ground [8]. A simple configuration, which will
be used to explain how MoM-SO works, is depicted in the
left panel of Fig. 1. This configuration consists of two solid
conductors placed into a hole dug in a conductive ground at
a certain depth. In order to calculate the cable impedance,
MoM-SO first represents the electric field on the boundary of
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Ĵs(θ̂)

y

x

ĉ

Fig. 1. Left Panel: Sample cross-section of the cable. The cable is made
up of 2 solid conductors, which are placed inside a hole buried in ground.
Conductive media are shown in gray, while dielectric media are shown in
white. Center panel: cross-section of the cable after applying the equivalence
theorem on the conductors. Equivalent currents Js(θp) are introduced on the
boundary of the conductors. Right panel: Cross-section of the cable after
applying the equivalence theorem to the cable-hole system. An equivalent
current Ĵs(θ̂) is introduced on the hole boundary ĉ.

each conductor with a truncated Fourier series

Ez(θp) =

Np∑
n=−Np

E(p)
n ejnθp , (1)

where θp ∈ [0, 2π].
Next, using the equivalence theorem from electromagnet-

ics [12], MoM-SO replaces each conductor with the sur-
rounding medium and an equivalent current distribution on
its boundary. This step maintains the electric and magnetic
fields outside the conductors unchanged, which will allow us
to calculate the cable impedance. The obtained configuration is
depicted in the center panel of Fig. 1. The equivalent current
density Js(θp), which accounts for the presence of the p-th
conductor, is also expressed in truncated Fourier series

Js(θp) =
1

2πap

Np∑
n=−Np

J (p)
n ejnθp , (2)

where ap is the radius of the conductor. The value of the
equivalent current Js(θp) is related to the electric field on
the boundary (1) through the so-called surface admittance
operator [13] which, in discretized form, reads

J = YsE , (3)

where J and E are vectors that contain all the Fourier
coefficients of Js(θp) and Ez(θp), respectively. The surface
admittance matrix Ys can be found analytically for solid [13],
[6] and hollow [7] round conductors. The surface admittance
relation (3) fully describes, from an external viewpoint, the
electromagnetic behavior of the conductor. Owing to this
relation, MoM-SO can calculate the cable parameters by taking
as unknowns only the electric field (1) on the boundary of
the conductors. Since the region inside the conductors is not
meshed, a large number of unknowns are saved with respect
to conductor partitioning or the FEM, which translates into
huge computational savings.

The equivalence theorem is applied a second time to further
simplify the calculation of the cable parameters. The hole
and the equivalent currents representing the conductors are
replaced by a single equivalent current distribution Ĵs(θ̂)
placed on the surface of the hole and by the surrounding
medium [8]. This step transforms the configuration in the
center panel of Fig. 1 into the configuration shown in the

right panel of the same figure. The equivalent current Ĵs(θ̂)
introduced on the boundary describes, in a very compact
and efficient way, the hole and all conductors present inside.
The equivalent current Ĵs(θ̂) satisfies a surface admittance
relationship analogous to (3)

Ĵ = ŶsÂ+TJ , (4)

as shown in [8]. In (4), Ĵ is the vector of Fourier coefficients of
Ĵs(θ̂), and Â is the vector of Fourier coefficients of the vector
potential on the boundary of the hole. The two transformations
turned a highly inhomogeneous electromagnetic problem (left
panel of Fig. 1), into a much simpler problem where the
surrounding medium is homogeneous in the x direction (right
panel of Fig. 1). This step greatly facilitates the calculation of
the cable parameters.

At this point, we can solve for the vector potential Âz on the
boundary of the hole by applying the vector potential integral
equation [14]

Âz(θ̂) = −µ0

ˆ 2π

0

Ĵs(θ̂)Gg(θ̂, θ̂′)âdθ
′ , (5)

where â is the radius of the hole and Gg is the Green’s function
of a two-layer medium [15], in our case the air-ground medium
shown in the right panel of Fig. 1. Equation (5) provides a
second relation between the equivalent current Ĵs(θ̂) and the
fields. Combined with (4), equation (5) can be used to compute
the vector potential on the boundary of the hole and the electric
field Ez(θp) on the boundary of all conductors. Finally, the
cable resistance and inductance can be readily obtained. The
key conceptual steps behind the MoM-SO method, here briefly
summarized, are described in detail in [6], [7], [8].

The main advantage of MoM-SO is that it provides the
accuracy of a FEM analysis at a much lower computational
cost. Its efficiency stems from the fact that MoM-SO does
not require the discretization of the fields or currents inside
the conductors, which would greatly increase complexity espe-
cially at high frequency, where the reduced skin depth imposes
a very fine mesh near the conductor boundaries. The efficiency
of MoM-SO allows for the computation of the resistance and
inductance of complex power cables in a few seconds instead
of the minutes or hours that a FEM analysis can take. This
feature makes it ideal for the proposed study, where numerous
cable configurations will be analysed.

III. PROXIMITY EFFECTS IN SINGLE-CORE CABLES IN
FLAT FORMATION

In this section, we investigate the relevance of proximity
effects on single-core (SC) cables laid in flat formation.

A. Simulation Setup

The configuration that we consider is shown in Fig. 2. Three
single-core cables are buried at a depth of 1 m in a soil with
conductivity σg = 0.01 S/m. The geometrical and material
properties of each SC cable are presented in Table I. The
spacing S between the SC cables will be varied from S = 0
to S = 6D, where D is the diameter of the cables.
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Fig. 2. The system of three SC cables considered in Sec. III. The separation
between adjacent cable is denoted by S. In this figure, the conductive materials
are shown in gray, while insulators are shown in white.

TABLE I
GEOMETRICAL AND MATERIAL PARAMETERS OF THE SINGLE-CORE

CABLES CONSIDERED IN SEC. III

Core Outer diameter = 39 mm, ρ = 3.365 · 10−8 Ω · m
Insulation t = 18.25 mm, εr = 2.85

Sheath t = 0.22 mm, ρ = 1.718 · 10−8 Ω · m
Jacket t = 4.53 mm, εr = 2.51

In order to investigate the relevance of proximity effects, we
computed the cable impedance using both MoM-SO, which
accounts for proximity, and with standard analytic formu-
las [1], [16], which neglect proximity. The impedance values
were calculated at 101 logarithmically-spaced points from
0.5 Hz to 1 MHz. The cable admittance was calculated using
standard analytic formulas [1]. The calculated impedance and
admittance parameters were then used to create two universal
line models (ULMs) [17] and perform transient simulations.

B. Core Excitation

We first consider the scenario where the core conductor of
the first cable is excited with a step voltage. The schematic of
the circuit considered in this section is shown in Fig. 3. We
consider the case where screens are grounded at one end, since,
when screens are grounded are both ends, proximity effects are
quite small. Grounding at both ends reduces proximity effects,
but also reduces transmission capacity due to the thermal
heating caused by the current flowing through the screens [18],
[19].

Figure 4 shows the voltage of the first core conductor at
the receiving end of the cable when cables are tightly-packed
(S = 0), and when cables are far apart (S = 4D). In both
cases, there is a very good agreement between the transient
results obtained with and without accounting for proximity.

Proximity effects have instead a strong influence on the
core voltage of the other conductors, and on sheath voltages.

1Ω Vcore1

Vsheath1

1 km

Vcore2

Vsheath2

1Ω

Fig. 3. Circuit schematic of the configuration considered in Sec. III-B.
Screens are grounded at the source end.
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Fig. 4. Voltage Vcore1 of the first core conductor for the example of
Sec. III-B, for a cable separation of S = 0 (top panel) and S = 4D (bottom
panel). The plots show the results obtained with proximity effects ( ), and
without proximity effects ( ).
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Fig. 5. Voltage Vsheath1 of the first sheath conductor for the example of
Sec. III-B, for a cable separation of S = 0 (top panel) and S = 4D (bottom
panel). The plots show the results obtained with proximity effects ( ), and
without proximity effects ( ).

Figure 5 shows the voltage of the first sheath conductor
Vsheath1 at the receiving end of the cable for S = 0 and
S = 4D. This figure demonstrates that proximity effects
significantly affect sheath voltages when cables are close to
each other.

In order to understand for which separation proximity
effects can be safely neglected, we performed a parametric
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Fig. 6. Maximum error in transient voltages for the example considered in
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the case of S = 0.
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Fig. 7. Circuit schematic for the example of intersheath excitation considered
in Sec. III-C.

transient analysis where the spacing between the cables is
varied from S = 0 up to S = 6D. The transient voltages on the
core and sheath conductors were computed for different cable
spacings with and without proximity effects. The maximum
relative error between the results obtained with and without
accounting for proximity was then calculated as

Maximum Error = max
t

∣∣∣∣Vprox(t)− Vno prox(t)

maxt |Vno prox(t)|

∣∣∣∣× 100% . (6)

Figure 6 depicts the maximum error on the voltages Vcore2,
Vsheath1, and Vsheath2. The figure demonstrates that neglect-
ing proximity can result in transient errors beyond 100% when
cables spacing S is comparable or smaller than the diameter of
the cables. Error decays, as expected, as spacing S increases.
Only when cable spacing S becomes larger than 6 times the
diameter of the cables, proximity can be safely neglected
without incurring large errors on the transient results.

C. Intersheath Excitation

Next, we consider a unit step excitation applied between
the two sheaths. This test is useful to illustrate how proximity
influences the propagation of the so-called intersheath mode.
The circuit schematic for this setup is shown in Fig. 7.
Figure 8 shows how proximity effects affect quite significantly
the intersheath voltage at the receiving end of the cable
when cables are close to each other. In Fig. 9, we present
the maximum error on the transient results obtained for this
setup when proximity is neglected, as a function of cables
spacing S. The error is depicted for two core voltages, and
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Fig. 8. Intersheath voltage at the receiving end of the transmission line in
the example considered in Sec. III-C. The separation between the cables is
S = 0.
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Fig. 9. Maximum error in transient voltages for the example in Sec. III-C,
as a function of cables spacing.

for the intersheath voltage. Also in this case we observe that
neglecting proximity is not an option when cables spacing
is comparable to the cable diameter. Analytic formulas that
neglect proximity can be used without a significant loss of
accuracy only when cable spacing is greater than 3–4 times
the cable diameter. In such case, neglecting proximity results
in errors below 20% to 30% for core and intersheath voltages.

D. Power Loss

Finally, we show how neglecting proximity can affect the
estimation of the power dissipated in the cable. Proximity
effects increase eddy currents inside the conductors, which
in turn increase power losses. We calculated the total power
lost on the cable assuming a 3-phase sinusoidal excitation at
60 Hz. The relative error between the power calculated with
and without proximity effects was then obtained as

PL Error =
PLprox − PLno prox

PLno prox
× 100% . (7)

Figure 10 shows this error for different values of cable spacing.
The plot shows that neglecting proximity effects can result in
an underestimation of power losses as large as 20% for low
cable spacings. Error is depicted for three different values of
the conductivity of the conductors, and is slightly higher when
conductivity is larger.
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Fig. 10. Error on the power loss (7) at 60 Hz for the assembly of three SC
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Fig. 11. Geometry of the pipe-type cable considered in Sec. IV.

IV. PROXIMITY EFFECTS IN PIPE-TYPE CABLES

We now investigate proximity effects in pipe-type cables
made by three SC cables enclosed by a metallic armor. The
cross-section of this type of cable is shown in Fig. 11. We
consider a set of medium-voltage cables with rated voltage of
11 kV and different current ratings. All cables are compliant
with the BS6622 cable standard [20]. The geometrical param-
eters and rated currents for each cable are listed in Table III.
The geometrical parameters a, b, c, d, e, f , and g are defined
in Fig. 11. The material properties of these cables are given
in Table II. Cables are assumed to be 1 km long and buried at
a depth of 1 m into a soil with conductivity σg = 0.01 S/m.

The SC cables inside the pipe are tightly packed, and
significant proximity effects are expected. This is confirmed
by Figure 12, which shows the current density inside the
cable computed with MoM-SO at 600 Hz, with and without
proximity effects. Neglecting proximity clearly changes the
prediction of the current distribution in the core conductors,
and results in no current flowing in the armor, as shown in the
right panel of Fig. 12. The left panel of Fig. 12 depicts the
correct current distribution obtained with MoM-SO. The plot
shows that, as a result of proximity, an induced current will
flow in the armor and contribute to power losses.

As in the previous section, the per-unit-length impedance
of the cable was computed with MoM-SO, which accounts
for proximity, and with standard analytic formulas [1], [16],
which neglect proximity. The cable admittance was computed
with standard analytic formulas [1]. The calculated parameters
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Fig. 12. Current density inside the pipe-type cable of Sec. IV with proximity
(left panel) and without proximity (right panel). These plots were computed
with MoM-SO at 600 Hz when a 3-phase excitation was applied on the core
conductors.

TABLE II
MATERIAL PARAMETERS OF THE PIPE-TYPE CABLE CONSIDERED IN

SEC. IV

Core Conductor σ = 5.8 · 107 S/m
Inner Insulation εr = 2.3

Metallic Copper tape Screen σ = 5.8 · 107 S/m
Outer Insulation εr = 2.3
Metallic Armor σ = 5.56 · 106 S/m, µr = 100

PVC Sheath εr = 3

TABLE III
THREE-CORE CABLE DIMENSIONS CONSIDERED FOR THE EXAMPLE IN

SEC. IV

# a b c d e f g Imax

1 4.90 8.90 9.00 9.50 22.5 25.0 27.8 195
2 5.75 9.75 9.85 10.35 24.5 27.0 29.8 230
3 6.40 10.40 10.50 11.00 26.0 28.8 31.6 265
4 7.15 11.15 11.25 11.75 27.7 30.5 33.3 300
5 7.95 11.95 12.05 12.55 29.7 32.5 35.3 335
6 9.20 13.20 13.30 13.80 32.5 35.3 38.8 380
7 10.25 14.45 14.55 15.05 35.1 38.3 41.3 435
8 11.60 16.00 16.10 16.60 38.6 41.8 45.3 490

Note: All units in columns 2-8 are in mm.
Column 9 presents rated current in Amperes.

were then used to create two ULM models [17] for each cable,
and perform transient analyses.

A. Core Excitation

The core conductor of the SC cable was excited with a
unit step voltage, with sheaths and armor grounded at the
source end. The circuit schematic for this setup is the same
as the one in Fig. 3, with in addition the armor conductor
grounded at the source end. First, we look at the error (6)
that arises on transient results if proximity is neglected.
Fig. 13 plots the maximum error on the voltage Vcore1 as
a function of the normalized core radius a/d, where a is
the radius of the core conductor, and d is the outer radius
of the whole SC cable, as depicted in Fig. 11. The error is
relatively low for all cases, and increases mildly as the core
radius increases. The error on the voltages of another core
conductor and on the sheaths is instead much larger, as shown
by Fig. 14. For all cables, which have different core radii,
neglecting proximity results in relative errors beyond 100%.
The error depends on the normalized core radius a/d, but
a monotonic dependence cannot be identified. These results
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Fig. 13. Maximum error in core 1 transient voltage for the example
considered in Sec. IV-A.
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Fig. 14. Maximum error in core 2, sheath 1 and 2 transient voltages for the
example considered in Sec. IV-A.

show how that the significance of proximity effects for pipe-
type cables cannot be easily estimated a priori, due to the
complex geometry of the cable.

B. Intersheath Excitation

We now repeat the analysis considering a unit step excitation
applied between two sheaths. The circuit schematic for this
test is as in Fig. 7, with in addition the cable armor grounded
at the source end. Figure 15 shows the error on the transient
voltages (6) for different core voltages, and for the intersheath
voltage. Even though the transient voltages of cores 2 and
3 are different, the maximum error variation for both of
them is identical, due to the symmetry in the cable geometry.
The results in Fig. 15 show that the maximum error without
proximity can be higher than 100%, which is very significant.
However, no clear relation can be observed between the error
and the relative core radius of the cable.

C. Power Loss

The influence of proximity effects on power losses was
estimated by applying a 3-phase 60-Hz sinusoidal excitation
to the cable. The error on the power dissipated in the cable
predicted with and without proximity effects was calculated
with (7) and is depicted in Fig. 16. The error is larger for
larger cores, and can exceed 30%.
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Fig. 15. Maximum error in core 2, core 3, and intersheath voltages for the
example considered in Sec. IV-B.
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Fig. 16. Power loss error in eight different 3-core cables considered in
Sec. IV-A. Each cables a/d ratio is used to generate the plot of normalized
power loss vs. relative core radius.

V. CONCLUSION

In this paper, we presented a comprehensive investigation
on the relevance of proximity effects on underground power
cables. Both single-core cables in flat formation and pipe-type
cables were considered. The influence of proximity effects on
transient voltages and power losses was analyzed as a function
of the cable geometry and of the type of excitation applied to
the cable. The obtained results can be summarized as follows.
For cables in flat formation under core excitation, neglecting
proximity can induce fairly large errors on the prediction of
core and sheath voltages. Errors can exceed 100% when cables
are very close to each other, and can be neglected only when
spacing is higher than 5–6 times their diameter. Comparable
errors arise in the prediction of the transient voltages caused
by an intersheath excitation. Neglecting proximity also leads to
an underestimation of the total power dissipated on the cable
under nominal 3-phase AC operation. The underestimation
can be as large as 20% for closely-space cables. In pipe-type
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cables, proximity effects are very significant, since conductors
are tightly packed. Neglecting proximity can produce transient
errors in excess of 100% and errors on the dissipated power
as high as 30%. In this case, however, it is harder to correlate
the significance of proximity effects to the cable geometry.
In conclusion, this study provides further evidence that, in
several transient scenarios, proximity effects have a significant
influence on transient voltages. Therefore, in order to obtain
accurate predictions, proximity must be accurately taken into
account when computing cable parameters for the simulation
of electromagnetic transients in power cables.
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